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Abstract 

Ying[M.S. Ying, Linguistic quantifiers modeled by Sugeno integrals, Artificial Intelligence 170(2006) 581-606] studied a 

framework for modeling quantifiers in natural languages in which each linguistic quantifier is represented by a family 

of fuzzy measures and the truth value of a quantified proposition is evaluated by using Sugeno integral. 

In this paper, we consider interval-valued fuzzy measures and interval quantifiers which are the generalized concepts 

of fuzzy measures and quantifiers, respectively. We also investigate logical properties of a first order language with 

interval quantifiers modeled by the Sugeno integral with respect to an interval-valued fuzzy measures.
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1. Introduction

Linguistic terms can be characterized as linguistic 

variables via fuzzy sets proposed by Zadeh in 

1965([16]). The existing definitions of linguistic quanti-

fiers are all based on fuzzy sets, the non-decreasing 

fuzzy quantifiers most, almost all, and at least half with 

membership function

 















i fi f  
≤ ≤ 

 i f  

characterized by parameters    ,   

and  , respectively. M.S. Ying [15] studied that 

ligquistic quantifiers modeled by Sugeno integral which 

was defined by Sugeno[11,12]. 

In order to characterize the higher level uncertainty 

associated to linguistic weights, it is more reasonable to 

define a linguistic quantifier by using interval-valued 

fuzzy measures. Note that we will define Sugeno in-

tegral with respect to an interval-valued fuzzy measure 

(see [1-10,14,18]).

In this paper, we study interval-valued quantifiers 

based on Sugeno integral with respect to an inter-

val-valued fuzzy measure. In section 2, we list the defi-

nitions and some properties of  fuzzy measures, linguis-

tic quantifiers, and Sugeno integrals. In section 3, we 

consider interval-valued fuzzy measures and inter-

val-valued quantifiers and investigates some properties 

of them.

2. Sugeno integrals and linguistic 

quantifiers

In this section, we list some notations and funda-

mental results needed in the sequel  from the theory of 

fuzzy measures and Sugeno integrals. Let     and 
   be a measurable space.

Definition 2 . 1  ([1-18]) (1) A set function   →   

is called a fuzzy measure if it satisfies the following 

properties

(i) ∅    and   ;

(ii) If ∊   and ⊂, then  ≤
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(2) A fuzzy measure   is continuous if  ∊  for 

≤ ∞  and  is monotone, then 

lim
→∞
  lim

→∞


The notion of dual fuzzy measure is required when 

dealing with dual linguistic quantifier. 

Definition 2 . 2   Let   be a fuzzy measure 

space. Then the dual set function    →  of   is 

defined by 

  

for each ∊

  It is well known that   is a fuzzy measure. We 

introduce the Sugeno integral with respect to a fuzzy 

measure  .

Definition 2 . 3  Let   be a fuzzy measure 

space. If ∊  and    →   is a -measurable 

function, then the Sugeno integral of   over   with 

respect to a fuzzy measure   is defined by 



 

where  ∊   ≥  for each ∊ 

The next lemma gives an alternative definition of 

Sugeno's integral for the case that the Borel field in a  

measurable space is taken to be the power set of a set 

.

Lemma 2 . 4  ( [ 1 2 ] )  I f the B orel field   in the fuzzy 

measure space   is the power set   of , 

then for any function   →, we have



  sup∊min  inf ∊ ∩

We remark that   expresses someones's sub-

jective evaluation of the statement "  is in " in a sit-

uation in which he guesses whether   is in  . We 

consider fuzzy quntified statements, namly, proposition 

of the form "  are  ".  Let   be the set 

of all fuzzy measures. Then we will define a fuzzy 

quantifier and introduce a partial order between fuzzy 

quantifiers and three operations of fuzzy quantifiers as 

followings.

Definition 2 . 5  ([15,17]) A fuzzy quantifier( or quan-

tifier for short) consists of the following two items;

(i) for each nonempty set , a Borel field   over   

is equipped; and

(ii) a Choice function

    ↦  ∊  

of the (proper) class 

    is ameasurablespace

Definition 2 . 6  ([15,17]) Let ,   and   be 

quantifiers. 

(1) We say that   is stronger than , written 

 ⊑, if for any nonempty set   and for any 

 ∊  , we have 

≤ .

(2) The dual   of , and the meet ⊓  and the 

union of   and   are defined respectively as follows; 

for any nonempty set   and for any  ∊  ,


  ,

⊓ min  , 

⊔ 

 We also introduce a first order logical language   

with linguistic quantifiers. The alphabet of our language 

  is given as follows:

(i) A denumerable set of individual variables:

 ⋯;

(ii) A set ∪
∞   of predicate symbols, where 

      is the set of all -place predicate symbols 

for each ≥ . It is assumed that ∪
∞ ≠∅;

(iii) Propositional connectives: ∼∧; and

(iv) Parentheses: .

The syntax of the language   is then presented by 

the following definition.

Definition 2 . 7  ([15, 17]) The set   of 

well-formed formulas is the smallest set of symbol 

strings satisfying the following conditions:

(i) If ≥ , ∊, and ⋯  are individual vari-

ables, then ⋯ ∊;

(ii) If   is a quantifier,   is an individual variable, 

and  ∊, then 

(iii) If   ∊, then ∼∧ ∊.

Definition 2 . 8  ([15,17]) An interpretation   of logical 

language consists of the following items:

(i) A measurable space  , called the domain of ;

(ii) For each ≥ , we associate the individual vari-

able , with an element 
  in ;

(iii) For each ≥   and for any ∊.

Definition 2 . 9  ([15,17]) Let   be an interpretation. 

Then the truth value   of a formula   under   is 

defined recursively as follows:

(i) If    ⋯ , then 
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   

  ⋯

 .

(ii) If     , then

  ⋅
where   is the domain of , ⋅  →  is 

a mapping such that 

⋅  

for all ∊  , and  is the ineterpretation 

which differs from   only in the assignment of the in-

dividual variable  , that is,     for all ≠  

and    ;

(iii) If  ∼ , then 

  

and if   ∧ , then

  min 
 The following proposition establishes a close link 

between the truth evaluation of fuzzy quantified state-

ment and the extension of fuzzy measure on fuzzy sets.

Proposition 2 . 1 0  ([15]) Let   be a fuzzy quantifier 

and   an individual variable, and let ∊ . Then 

for any interpretation , 

 
  ,

where    is the extension of   on fuzzy set.

Proposition 2 . 1 1  ([15]) Let   be a finite set, let   be 

an interpretation with   as its domain, and let ∊ . 

Then for any fuzzy quantifier   and ∊, we 

have

(i)   ≥   if and only if 

 ∊   ≥ ≥  .

(ii)   ≤   if and only if 

1  ∊   ≥ ≤  .

3. interval-valued Linguistic quantifiers 

and interval-valued fuzzy measures

Throughout the paper,   is the unit interval and 

     ∊  and  ≤ 
For any ∈, we define  . Obviously, ∈. 

Definition 3 . 1  ([3-10]) If  ∈ ∊ , then we de-

fine

(1)    ,

(2)    ,

(3) ∧ ∧ ∧,

(4) ∨ ∨ ∨,

(5) ≤   if and only if  ≤  and  ≤ ,

(6)     if and only if ≤   and ≠ ,

(7) ⊂   if and only if  ≤  and  ≤ .

Theorem 3 . 2  ([3-10]) Let  ∈ . Then the fol-

lowings hold.

  (1) idempotent law: ∧  ∨ , 

  (2) commutative law: ∧ ∧ ∨ ∨,

  (3) associative law: ∧∧ ∧∧

 ∨∨ ∨∨

  (4) absorption law: ∧∨  ∨∧  ,

  (5) distributive law: ∧∨  ∧∨∧
∨∨  ∨∧∨

Definition 3 . 3  ([3-10]) A set function 

  × →∞ is called the Hausdorff metric if

= max {sup ∊  inf∊  ,

                 sup∊  inf ∊  },

for all ∊ .

Theorem 3 . 4  ([3-10]) If   × →∞ is the 

Hausdorff metric, then for  , ∊ 


 max  .

Definition 3 . 5   Let    be a measurable space. If 

an interval-valued set function      →   

is called an interval-valued fuzzy measure if   and 

  are fuzzy measures.⊔

Intuitively,   express some one's subjective 

evaluation of the statement "  is in  " in a situation 

in which he guesses whether   is in  . Let   

be the set of all fuzzy measures and  the set 

of all interval-valued fuzzy measures. 

Definition 3 . 6  ([3-10])  A closed set-valued function 
  is said to be  measurable if for each open set 

⊂, 

   ∈ ∩≠∅ ∈.

Definition 3 . 7   The Sugeno integral of   over   

with respect to an interval-valued fuzzy measure 

    is defined by 



 





.
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Definition 3 . 8   An interval quantifier   is defined 

by

    ,

where    and    are quantifiers in the meaning 

of Definition 3.4.

Remark 3 . 9   From Definitions 2.4, 2.5 and 2.6, for 
 ,  


, and  


, we easily 

have the following some properties:
⊑
  if and only if 

⊑
  and 

⊑
.


   


,

⊓
  

⊓


⊓
,

⊔
  

⊔


⊔


Theorem 3 . 1 0  Let   be an interval quantifier and   

an individual variable, and let ∊ . Then for any 

interpretation ,


  

 
,

where 
 ⋅   and


 ⋅ .

Proof.  By Definition 2.9, we have


 ⋅ ,


 ⋅ 

Then, Definition 3.5 implies the following equation:


 ⋅ 
 ⋅⋅ 
 

 


  Clearly, the above Theorem 3.10 implies the fol-

lowing corollary.

Corollary 3 . 1 1  Let   be an interval-valued fuzzy 

quantifier and   an individual variable, and let 

∊ . Then for any interpretation , 


 
  ,

where  
 


  and 




 are the ex-

tensions of 
 


 on interval-valued fuzzy set, 

respectively.

Ex ample 3 . 1 2   We first consider the simplest case of 

interval-valued fuzzy quantification. For any inter-

val-valued fuzzy quantifier    and for any 

∊, if   is an interpretation with the domain be-

ing a singleton , Then for any inetrval-valued 

fuzzy quantifire  ,


  .

 This means that fuzzy quantification degenerates on 

a singleton discourse universe.

Ex ample 3 . 1 3   This example shows that the Sugeno 

integral evaluation of universally and existentially inter-

val-valued fuzzy quantified statements coincide with 

the standard way, and so gives a witness for reasona-

blenss of Sugeno integral semantics of interval-valued  

quantification. Let   be an interval-valued fuzzy quan-

tifier and   an individual variable, and  ∊. Then 

for any interpretation    with the domain   and for any 

⊂, the universal interval-valued fuzzy quantifier 
∀ ∀∀="all" and the existential interval-valued 

fuzzy quantifier ∃ ∃∃="some" are defined as 

follows:

∀ i f   otherwise
∃ i f ≠∅  otherwise

and then we have


∀   ∀   ∀  

and


∃   ∃   ∃.

Ex ample 3 . 1 4   This example shows that the existing 

definitions of linguistic quantifiers are based on inter-

val-avlued fuzzy sets, the non-decreasing inter-

val-valued fuzzy quantifiers: most, almost all, and at 

least half with membership function






















 





 



i f   
i f  ≤ ≤ 




  i f   

characterized by parameters        

and  , respectively.

To conclude this section, in the case of finite dis-

course universe we give a necessary and sufficient 

condition under which the truth value of an inter-

val-valued quantified proposition is  bounded by a giv-

en threshold value from up and below. By the same 

method of the proof of Theorem 3.10, we easily obtain 

the following proposition. 

P roposition 3 . 1 5   Let   be a finite set, let   be an 
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interpretation with   as its domain, and let 
 ∊ . Then for any interval-valued fuzzy 

quantifier   and ∊, we have

(i) 
 ≥   if and only if 

   
∊  ≥ 

 ≥   and


∊  ≥ 

 ≥ .

(ii) 
 ≤   if and only if 

   
∊  ≥ 

 ≤   and


∊  ≥ 

 ≤ .
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