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1. Introduction

In 1971, Rosenfeld[12] defined the fuzzy subgroup of
a group(G, ·) as a fuzzy set in G satisfying the con-
ditions, by using the concept of fuzzy sets introduced
by Zadeh[13]. Many authors [3, 5, 9, 11] have mainly
investigated various algebraic notions based on his ap-
proach. In fact, in Rosenfeld’s work, only the subset
are fuzzy, but the group operation is crisp. Recently,
Demirci[7] introduced the concept of fuzzy equalities
and fuzzy mappings. By using them, he provided a
good tool for fuzzyfying the group operation on a crisp
set[6].

In 1986, Atanassove[1] introduced the notion of in-
tuitionistic fuzzy set as the generatization of fuzzy
sets. In 1989, Biswas[3] introduced the intuitionistic
fuzzy subgroup of a group (G, ·) as an intuitionistic
fuzzy set of G satisfying some conditions. Also many
authors[2,9] have worked to present the intuitionistic
fuzzy setting of various algebraic concept based on
their approach.

In this paper, by taking the group operation on a
crisp set as an intuitionistic fuzzy mapping in the sense
of [10], we establish the group structure on a crisp set
and study the validity of the classical results in this
setting.

2. Preliminaries

We will list some concept and one result needed in
the later sections.

For sets X,Y and Z, f = (f1, f2) : X → Y × Z
is called a complex mapping if f1 : X → Y and
f2 : X → Z are mappings. Throughout this paper,
we will denote the unit interval [0,1] as I and X,Y, Z,
etc., are nonempty crisp sets.

Definition 2.1[1,6]. A complex mapping A =
(µA, νA) : X → I × I is called an intuitionistic fuzzy
set(in short, IFS) in X if µA(x) + νA(x) ≤ 1 for
each x ∈ X, where the mappings µA : X → I and
νA : X → I denote the degree of membership (namely
µA(x)) and the degree of non-membership(namely
νA(x)) of each x ∈ X to A, respectively. In particular,
0∼ and 1∼ denote the intuitionistic fuzzy empty set
and the intuitionistic fuzzy whole set in a set X de-
fined by 0∼(x) = (0, 1) and 1∼(x) = (1, 0) for each
x ∈ X, respectively.

We will denote the set of all IFSs in X as IFS(X).

Definition 2.2[1,9]. Let A = (µA, νA) and B =
(µB , νB) be IFSs in X and let {Aα}α∈Γ ⊂ IFS(X).
Then

(1) A ⊂ B if and only if µA ≤ µB and νA ≥ νB .
(2) A = B if and only if A ⊂ B and B ⊂ A.
(3) Ac = (νA, µA).
(4) A ∩B = (µA ∧ µB , νA ∨ νA).
(4)′

⋂
α∈Γ

Aα = (
∧
α∈Γ

µAα ,
∨
α∈Γ

νAα).

(5) A ∪B = (µA ∨ µB , νA ∧ νB).
(5)′

⋃
α∈Γ

Aα = (
∨
α∈Γ

µAα ,
∧
α∈Γ

νAα).

(6) [ ]A=(µA, 1− µA), <> A = (1− νA, νA).

Definition 2.3[4]. R is called an intuitionistic fuzzy
relation from X to Y (or on X×Y ) if R ∈ IFS(X×Y ).
In particular, if R ∈ IFS(X ×X) then R is called an
intuitionistic fuzzy relation on X.

We will denote the set of all intuitionistic fuzzy re-
lation on X as IFR(X).
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Definition 2.4[10]. Let IEX=(µIEX , νIEX ) ∈
IFR(X). Then IEX is called an intuitionistic fuzzy
equality an X if it satisfies the following conditions:

(ie.1) IEX(x, y) = (1, 0) ⇔ x = y, ∀x, y ∈ X,
(ie.2) IEX(x, y)=IEX(y, x), ∀x, y ∈ X,
(ie.3) µIEX (x, y) ∧ µIEX (y, z) ≤ µIEX (x, z)

and
νIEX (x, y) ∨ νIEX (y, z) ≥ νIEX (x, z),∀ x, y, z ∈ X.

We will denote the set of all intuitionistic fuzzy equal-
ities on X as IE(X). Let IE ∈IE(X) and let a, b ∈ X.
Then µIE(a, b)[resp. νIE(a, b)] is interpreted the value
as the grade of “a and b are nearly equal”[resp. the
grade of “a and b are nonequal”].

Definition 2.4′[7]. Let X be a nonempty set and let
EX be a fuzzy relation on X. Then EX is called a
fuzzy equality on X if it satisfies the following condi-
tions:

(e.1) EX(x, y) = 1⇔ x = y, ∀x, y ∈ X,
(e.2) EX(x, y) = EX(y, x), ∀x, y ∈ X,
(e.3) EX(x, z) ≥ EX(x, y) ∧ EX(y, z), ∀x, y, z ∈ X,

Let E be a fuzzy equality on X and let a, b ∈ X.
Then we interpret the value E(a, b) as the grade of “a
and b are nearly equal”. We will denote the set of all
fuzzy equalities on X as E(X).

Remark 2.4. (a) If EX ∈E(X), then (EX , E c
X ) ∈

IE(X).
(b) If IEX ∈ IE(X), then [ ]IEX , <> IEX ∈ IE(X).

Moreover, µIEX , ν
c

IEX
∈ E(X).

Definition 2.5[10]. Let IEX and IEY be two in-
tuitionistic fuzzy equalities on X and Y , respectively
and let f ∈ IFS(X × Y ). Then f is called an
intuitionistic fuzzy mapping from X to Y with respect
to (in short, w .r .t .) IEX ∈ IE(X) and IEY ∈ IE(Y),
denoted by f : X → Y , if it satisfies the following
condition :

(if.1) ∀x ∈ X, ∃y ∈ Y such that µf (x, y) > 0 and
νf (x, y) < 1.

(if.2) ∀x, y ∈ X,∀z, w ∈ Y ,
µf (x, z) ∧ µf (y, w) ∧ µIEX (x, y) ≤ µIEY (z, w)

and
νf (x, z) ∨ νf (y, w) ∨ νIEX (x, y) ≥ νIEY (z, w).

Definition 2.5′[7]. Let f be a fuzzy relation from
X to Y , i.e., R ∈ IX×Y . Let EX and EY be fuzzy
equalities on X and Y , respectively. Then f is called
a fuzzy mapping from X to Y w .r .t . EX and EY , de-
noted by f : X → Y , if it satisfies the following condi-
tions :

(f.1) ∀x ∈ X, ∃y ∈ Y such that f(x, y) > 0,

(f.2) ∀x, y ∈ X ∀z, w ∈ Y , f(x, z) ∧ f(y, w) ∧
EX(x, y) ≤ EY (z, w).

Result 2.A[10, Proposition 3.4]. (a) Let f : X →
Y be a fuzzy mapping w.r.t. EX ∈ E(X) and EY ∈
E(Y). Then (f, f c) : X → Y is an intuitionistic fuzzy
mapping from X to Y w.r.t. (EX , E c

X ) ∈ IE(X) and
(EY , E c

Y ) ∈ IE(Y)
(b) Let f = (µf , νf ) : X → Y be an intuitionistic

fuzzy mapping from X toY w.r.t. IEX ∈ IE(X) and
IEY ∈ IE(Y). Then <> f and [ ] f are intuitionistic
fuzzy mapping from X to Y w.r.t. intuitionistic fuzzy
equalities <> IEX and <> IEY , and [ ] IEX and [ ]
IEY , respectively.

(c) Let f = (µf , νf ) : X → Y be an intuitionistic
fuzzy mapping from X to Y w.r.t. IEX ∈ IE(X) and
IEY ∈ IE(Y). Then µf and ν c

f are fuzzzy mappings
from X to Y w.r.t. fuzzy equalities µIEX and µIEY ,
and ν c

IEX
and ν c

IEY
on X and Y , respectively.

Definition 2.6[10]. For sets X and Y , let f : Y → Y
be an intuitionistic fuzzy mapping from X to Y w.r.t.
IEX ∈ IE(X) and IEY ∈ IE(Y). Then f is said to be
:

(a) strong if ∀x ∈ X,∃y ∈ Y such that f(x, y) =
(1, 0),

(b) surjective if ∀y ∈ Y , ∃x ∈ X such that µf (x, y) >
0 and νf (x, y) < 1,

(c) strong surjective if ∀y ∈ Y , ∃x ∈ X such that
f(x, y) = (1, 0),

(d) injective if
µf (x, z) ∧ µf (y, w) ∧ µIEY (z, w) ≤ µIEX (x, y)

and
νf (x, z) ∨ νf (y, w) ∨ νIEY (z, w) ≥ νIEX (x, y) ∀x, y ∈

X, ∀z, w ∈ Y ,
(e) bijective if it is surjective and injective,
(f) strong bijective if it is strong surjective and injec-

tive.

Definition 2.6′[7]. Let f : X → Y be a fuzzy map-
ping w.r.t. EX and EY .
Then f is said to be :

(a) strong if ∀x ∈ X,∃y ∈ Y such that f(x, y) = 1,
(b) surjective if ∀y ∈ Y,∃x ∈ X such that f(x, y) > 0,
(c) strong surjective if ∀y ∈ Y,∃x ∈ X such that

f(x, y) = 1,
(d) injective if f(x, z) ∧ f(y, w) ∧ EY (z, w) ≤

EX(x, y),∀x, y ∈ X,∀z, w ∈ Y ,
(e) bijective if it is surjective and injective,
(f) strong bijective if it strong surjective and injec-

tive.

Result 2.B[10, Proposition 3.6]. (a) Let f : X →
Y be a strong [surjective, strong surjective, injective,
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bijective, strong bijective] fuzzy mapping w.r.t. fuzzy
equalities EX and EY on X and Y , respectively, then
(f, f c) : X → Y is a strong [surjective, strong
surjective, injective, bijective, strong bijective] intu-
itionistic fuzzy mapping w.r.t. (EX ,E c

X) ∈ IE(X) and
(EY , E c

Y ) ∈IE(Y).
(b)Let f = (µf , νf ) : X → Y be a strong [surjective,

strong surjective, injective, bijective, strong bijective]
intuitionistic fuzzy mapping w.r.t. IEX ∈ IE(X) and
IEY ∈ IE(Y). Then <> f and [ ] f are a strong [surjec-
tive, strong surjective, injective, bijective, strong bijec-
tive] intuitionistic fuzzy mapping w.r.t. intuitionistic
fuzzy equalities <> IEX and <> IEY , and [ ]IEX
and [ ]IEY on X and Y , respectively.

(c) Let f = (µf , νf ) : X → Y be a strong [surjective,
strong surjective, injective, bijective, strong bijective]
intuitionistic fuzzy mapping w.r.t. IEX ∈ IE(X) and
IEY ∈ IE(Y). Then µf and ν c

f are a strong [surjective,
strong surjective, injective, bijective, strong bijective]
fuzzy mapping w.r.t. intuitionistic fuzzy equalities
µIEX and µIEY , and ν c

IEX
and ν c

IEY
on X and Y ,

respectively.

Result 2.C[10, Proposition 3.7]. Let ∆X be the
intuitionistic fuzzy relation on a set X defined by : For
each (x, y) ∈ X ×X,

∆X(x, y) =
{

(1, 0), if x = y,
(0, 1), if x 6= y.

Then ∆X is a strong and strong bijective intuitionis-
tic fuzzy mapping on X w.r.t. an intuitionistic fuzzy
equality IEX on X. In fact, ∆X is an intuitionistic
fuzzy equality on X. In this case, ∆X is called an
identity intuitionistic fuzzy mapping on X.

3. Definition of intuitionistic vague
groups and their properties.

Definition 3.1. (i) A strong intuitionistic fuzzy
mapping f : X × X → X w.r.t. IEX×X
∈ IE(X × X) and IEX ∈ IE(X) is called an
intuitionistic vague operation
on X w.r.t. EX×X and EX .

(ii) An intuitionistic vague binary operation f on X
w.r.t. IEX×X and IEX is said to be intuitionistic
transitive of first order if

(IT.1) µf (a, b, c) ∧ µIEX (c, d) ≤ µf (a, b, d)
and
νf (a, b, c) ∨ νIEX (c, d) ≥ νf (a, b, d), ∀a, b, c, d ∈ X.
(iii) An intuitionistic vague binary operation f on

X w.r.t. IEX×X and IEX is said to be intuitionistic
transitive of second order if

(IT.2) µf (a, b, c) ∧ µIEX (b, d) ≤ µf (a, b, d)
and

νf (a, b, c) ∨ νIEX (b, d) ≥ νf (a, d, c), ∀a, b, c, d ∈ X.

It can easily be seen that every crisp mapping
f : X × X → X is an intuitionistic vague binary
operation on X w.r.t. ∆X×X and ∆X , and it is tran-
sitive of both first order and second order.

Definition 3.1′[6]. (i) A strong fuzzy mapping f :
X × X → X w.r.t. EX×X ∈ E(X × X) and EX ∈
E(X) is called a vague binary operation on X w.r.t.
EX×X and EX .

(ii) A vague binary operation f on X w.r.t. EX×X
and EX is said to be transitive of first order if

(T.1) f(a, b, c) ∧ EX(c, d) ≤ f(a, b, d).
and

(iii) An intuitionistic vague binary operation f on X
w.r.t. EX×X and EX is said to be transitive of second
order if

(T.2) f(a, b, c) ∧ EX(b, d) ≤ f(a, d, c).

Remark 3.2.(a) If f is a vague binary operation
on X w.r.t. EX×X ∈ E(X × X) and EX ∈ E(X),
then (µf , µcf ) is an intuitionistic vague binary opera-
tion on X w.r.t. (EX×X , E c

X×X )∈ IE(X × X) and
(EX , E c

X ) ∈ IE(X).
(b) If a vague binary operation f on X w.r.t.

EX×X ∈ E(X × X) and E(X) ∈ E(X) is transi-
tive of first [resp. second] order, then an intuition-
istic vague binary operation (µf , µ c

f ) on X w.r.t.
(EX×X , E c

X×X )∈ IE(X × X) and (EX , E c
X )∈ IE(X)

is intuitionistic transitive of first[resp. second] order.
(c) If f is an intuitionistic vague binary operation

on X w.r.t. IEX×X ∈ IE(X × X) and IEX ∈ IE(X),
then [ ]f [resp. <> f ] is an intuitionistic vague bi-
nary operation on X w.r.t. [ ]IEX×X ∈IE(X × X)
and [ ]IEX ∈ IE(X) [resp. <> IEX×X ∈ IE(X × X)
and <> IEX ∈ IE(X)]. Moreover, µf [resp. ν c

f ] is a
vague binary operation on X w.r.t. µIEX×X ∈ E(X ×
X) and µIEX ∈ E(X) [resp. νIE c

X×X
∈ E(X × X) and

ν c
IEX
∈ E(X)].

(d) If an intuitionistic vague binary operation f on
X w.r.t. IEX×X ∈ IE(X × X) and IEX ∈ IE(X) is
intuitionitsic transitive of first [resp. second] order,
then [ ]f and <> f are intuitionitsic transitive of first
[resp. second] order, respectively. Moreover, µf and
νf

c are transitive of first [resp. second] order, respec-
tively.

Let G be a nonempty crisp set.

Definition 3.3. Let ◦ be an intuitionistic vague bi-
nary operation on G w.r.t. IEG×G ∈ IE(G × G) and
IEG ∈ IE(G).

(i) (G, ◦) is called an intuitionistic vague semigroup
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if it satisfies the following condition :
(IVG, 1) ∀a, b, c, d,m, q, w ∈ G,
µ◦(b, c, d) ∧ µ◦(a, d,m) ∧ µ◦(a, b, q) ∧ µ◦(q, c, w) ≤

µIEG(m,w)
and
ν◦(b, c, d) ∨ ν◦(a, d,m) ∨ ν◦(a, b, q) ∨ ν◦(q, c, w) ≥

νIEG(m,w).
(ii) An intuitionistic vague semigroup (G, ◦) is called

an intuitionistic vague monoid if it satisfies the follow-
ing condition :

(IVG, 2) ∃ an (two-sided) identity element e ∈ G
such that
µ◦(e, a, a) ∧ µ◦(a, e, a) = 1

and
ν◦(e, a, a) ∨ ν◦(a, e, a) = 0, ∀a ∈ G.
(iii) An intuitionistic vague monoid (G, ◦) is called

an intuitionistic vague group if it satisfies the follow-
ing condition :

(IVG, 3) ∀a ∈ G, ∃ an (two-sided) inverse element
a−1 ∈ G such that
µ◦(a−1, a, e) ∧ µ◦(a, a−1, e) = 1

and
ν◦(a−1, a, e) ∨ ν◦(a, a−1, e) = 0.
(iv) An intuitionistic vague semigroup (G, ◦) is said

to be abelian (commutative) if it satisfies the condition
:

(IVG, 4) ∀a, b,m,w ∈ G,
µ◦(a, b,m) ∧ µ◦(b, a, w) ≤ µIEG(m,w)

and
ν◦(a, b,m) ∨ ν◦(b, a, w) ≥ µIEG(m,w).

Definition 3.3′[6]. Let ◦ be a vague binary operation
on G w.r.t. EG×G ∈ E(G × G) and EG ∈ E(G).

(i) (G, ◦) is called a vague semigroup if it satisfies the
following condition :

(VG, 1) ∀a, b, c, d,m, q, w ∈ G,
◦(b, c, d)∧◦(a, d,m)∧◦(a, b, q)∧◦(q, c, w) ≤ ◦(m,w)

(ii) A vague semigroup (G, ◦) is called a vague
monoid if it satisfies the following condition :

(VG, 2) ∃ an (two-sided) identity element e ∈ G such
that
◦(e, a, a) ∧ ◦(a, e, a) = 1,∀a ∈ G.

(iii) A vague monoid (G, ◦) is called a vague group if
it satisfies the following condition :

(VG, 3) ∀a ∈ G, ∃ an (two-sided) inverse element
a−1 ∈ G such that
◦(a−1, a, e) ∧ ◦(a, a−1, e) = 1.

(iv) A vague semigroup (G, ◦) is said to be abelian
(commutative) if it satisfies the condition :

(VG, 4) ∀a, b,m,w ∈ G,
◦(a, b,m) ∧ ◦(b, a, w) ≤ EG(m,w).

Remark 3.4. (a) If (G, ◦) is a vague semigroup [resp.
abelian semigroup, monoid and group] w.r.t. EG×G ∈

E(G × G) and EG ∈ E(G), then (G, (µ◦, µ c
◦ )) is an in-

tuitionistic vague semigroup [resp. abelian semigroup,
monoid and group] w.r.t. (EG×G, E c

G×G ) ∈ IE(G ×
G) and (EG, E c

G ) ∈ IE(G).
(b) Let ◦ be an intuitionistic vague binary opera-

tion on G w.r.t. IEG×G ∈ IE(G × G) and IEG ∈
IE(G). If (G, ◦) is an intuitionistic vague semigroup
[resp. abelian semigroup, monoid and group], then
(G, [ ]◦) and (G,<> ◦) are intuitionistic vague semi-
group [resp. abelian semigroups, monoids and groups]
w.r.t. [ ]IEG×G ∈ IE(G × G), [ ]IEG ∈ IE(G) and
<> IEG×G ∈ IE(G × G), <> IEG ∈ IE(G), re-
spectively. Moreover, (G,µ◦) and (G, νc◦) are vague
semigroups [resp. abelian semigroups, monoids and
groups] w.r.t. µIEG×G ∈ E(G × G), µIEG ∈ E(G) and
ν c
IEG×G

∈ E(G × G), ν c
IEG
∈ E(G), respectively.

Let ◦ be an intuitionistic vague operation on G w.r.t.
∆G×G and ∆G such that ◦(G×G×G) ⊂ {0, 1}×{0, 1}.
Then an intuitionistic vague group (G, ◦) one-to-one
way corresponds to a group in the classical sense. In
this case, an intuitionistic vague group is simply called
a crisp group. For a given classical group (G, ·), an
infinite number of nontrivial intuitionistic vague group
can be defined on G.

Example 3.5. Let (G, ·) be a classical group,
let α, β, θ, λ, µ, γ be fixed real number such that
0 < θ ≤ α ≤ β < 1 and 0 < λ ≤ µ ≤ γ < 1,
where θ + γ ≤ 1, α + µ ≤ 1 and β + λ ≤ 1. Let
IEG and IEG×G be intuitionistic fuzzy equalities
on G and G × G defined as follows, respectively :
∀x, y, z, ω ∈ G,

IEG(x, y) =
{

(1, 0), if x = y,
(β, λ), if x 6= y,

and

IEG×G((x, y), (z, ω)) =
{

(1, 0), if (x, y) = (z, ω),
(α, µ), if (x, y) 6= (z, ω).

We define the intuitionistic fuzzy relation ∗ on
G×G×G as follows : ∀x, y, z ∈ G

∗(x, y, z) =
{

(1, 0), if z = x · y,
(θ, γ), if z 6= x · y.

Then we can easily see that (G, ∗) is an intuitionis-
tic vague semigroup. Furthermore, the element e of
(G, ·) and the inverse element a−1 of a in (G, ·) are
the identity element of (G, ∗) and the inverse element
of a in (G, ∗), respectively, Thus (G, ∗) is an intuition-
istic vague group. If (G, ·) is abelian, so is (G, ∗). It
should also be noticed that ∗ is neither intuitionistic
transitive of first order nor intuitionistic transitive of
second order for θ < β and γ > λ, and that when
(θ, γ) = (α, µ) = (β, λ), ∗ is both intuitionistic tran-
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(b) If ◦ is intuitionistic transitive if first order, and
f is intuitionistic vague injective and surjective, then
the mapping f−1 : G′ → G is an intuitionistic vague
homomorphism.

Proof. (a) The proof is the analogue of the classical
case in[8].

(b) Suppose ◦ is intuitionistic transitive of first order,
and f is an intuitionistic vague injective and surjective.
Let u, v, w ∈ G′. Since f is surjective and ◦ is strong,
∃a, b, c ∈ G such that a = f−1(u), b = f−1(v) and
◦(a, b, c) = (1, 0). Since f is an intuitionistic vague
homomorphism,
◦′(f(a), f(b), f(c)) = ◦′(u, v, f(c)) = (1, 0).

Since ◦ is an intuitionistic fuzzy mapping, by (if. 2),
µ◦′(u, v, w) = µ◦′(u, v, w) ∧ µ◦′(u, v, f(c)) ≤

µIEG′ (w, f(c)).
and (4.1)
ν◦′(u, v, w) = ν◦′(u, v, w) ∨ ν◦′(u, v, f(c)) ≥

νIEG′ (w, f(c)).
On the other hand,
µIEG′ (w, f(c)) = µIEG′ (f(f−1(w)), f(c))[Since f is

bijective]
≤ µIEG(f−1(w), c) [Since f is intuitionistic vague in-

jective]
= µ◦(f−1(u), f−1(v), c) ∧ µIEG(f−1(w), c) [Since
◦(f−1(u), f−1(v), c) = (1, 0)]
≤ µ◦(f−1(u), f−1(v), f−1(w)) [Since ◦ is intuitionis-

tic transitive of first order]
and (4.2)
νIEG′ (w, f(c)) = νIEG′ (f(f−1(w)), f(c))
≥ νIEG(f−1(w), c)
= ν◦(f−1(u), f−1(v), c) ∨ νIEG(f−1(w), c)
≥ ν◦(f−1(u), f−1(v), f−1(w))

Thus, by (4.1) and (4.2),
µ◦′(u, v, w) ≤ µ◦(f−1(u), f−1(v), f−1(w))

and
ν◦′(u, v, w) ≥ ν◦(f−1(u), f−1(v), f−1(w)).

Hence f−1 : G′ → G is an intuitionistic vague homo-
morphism.

Proposition 4.10. Let (G, ◦) and (G′, ◦′) be two
intuitionistic vague groups w.r.t. IEG×G ∈ IE(G),
IEG ∈ IE(G) and IEG′×G′ ∈ IE(G′ × G′) and IEG′ ∈
IE(G′), respectively, and let f : G → G′ be an intu-
itionistic vague homomorphism. Then :

(a) KerIVf is an intuitionistic vague subgroup of G.
(b) For any intuitionistic vague subgroup H of G,

f(H) is an intuitionistic vague subgroup of G′.
(c) For any intuitionistic vague subgroup K of G′,

f−1(K) is an intuitionistic vague subgroup of G.

Proof. (a) For any a, b ∈ KerIVf and each c ∈ G,
suppose ◦(a, b−1, c) = (1, 0). Then f(a) = f(b), i.e.,
f−1(a) = f−1(b). Thus

◦′((f(a), f−1(a), eG′) = ◦′(f(a), f−1(b), eG′) = (1, 0)
Since f is an intuitionistic vague homomorphism, by
Proposition 4.8(b) and the hypothesis,
◦′((f(a), f−1(b), f(c)) = ◦′(f(a), f−1(b), f(c)) =

(1, 0).
Thus
µ◦′((f(a), f−1(b), eG′) ∧mu◦′(f(a), f−1(b), f(c))

= 1 ≤ µIEG′ (f(c), eG′)
and
ν◦′((f(a), f−1(b), eG′) ∨ nu◦′(f(a), f−1(b), f(c))

= 0 ≥ νIEG′ (f(c), eG′).
So IEG′(f(c), eG′) = (1, 0), i.e., f(c) = eG′ . Hence
c ∈ KerIVf . Therefore, by Theorem 4.3, KerIVf is an
intuitionistic vague subgroup of G.

(b) Suppose H is an intuitionistic vague subgroup
of G. For any a, b ∈ f(H) and each c ∈ G′. Sup-
pose ◦′(a, b−1, c) = (1, 0). ◦ is an intuitionistic fuzzy
mapping, ∃µ, ν ∈ H and w ∈ G such that f(u) = a
f(v) = b and ◦(u, v−1, w) = (1, 0). Since H is an
intuitionistic vague subgroup of G, by Theorem 4.3,
w ∈ H. Then f(w) ∈ f(h). Since f is an intuitionistic
vague homomorphism, by Proposition 4.8(b),
◦′(f(u), f(v−1), f(w)) = ◦′(f(u), f(v)−1, f(w))

= ◦′(a, b−1, f(w)) = (1, 0).
Thus
µ◦′(a, b−1, f(w))∧µ◦′(a, b−1, c) = 1 ≤ µIEG′ (f(w), c)

and
ν◦′(a, b−1, f(w))∨ν◦′(a, b−1, c) = 0 ≥ νIEG′ (f(w), c).

So IEG′(f(w), c) = (1, 0), i.e., c = f(w). Since w ∈ H,
c ∈ f(H). Hence, by Theorem 4.3, f(H) is an intu-
itionistic vague subgroup of G′.

(c) It can be proved in a similar manner to the proof
of (b).

For a mapping f : X → Y , let Imf = {f(a) ∈ Y :
a ∈ X}. Then the following is the immediate result of
Proposition 4.14(b).

Corollary 4.14. Let (G, ◦) and (G′, ◦′) be two intu-
itionistic vague groups w.r.t. IEG×G ∈ IE(G × G),
IEG ∈ IE(G) and IEG′×G′ ∈ IE(G′ × G′), IEG′ ∈
IE(G′), respectively, and let f : G → G′ be an in-
tuitionistic vague homomorphism. Then Imf is an
intuitionistic vague subgroup of G′.
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IEG ∈ IE(G), and let H be a nonempty crisp sub-
set of G. Let {Hα}α∈Γ be the family of all in-
tuitionistic vague subgroups of G containing H.
Then

⋂
α∈Γ

Hα is an intuitionistic vague subgroup of

G. In this case,
⋂
α∈Γ

Hα is called the intuitionistic

vague subgroup of G generated by H, and it is denoted
by < H >.

Definition 4.5. Let (G, ◦) and (G′, ◦′) be two intu-
itionistic vague groups. Then a mapping(in the classi-
cal sense) f : G → G′ is called an intuitionistic vague
homomorphism if it satisfies the following conditions :
µ◦(a, b, c) ≤ µ◦′(f(a), f(b), f(c))

and
ν◦(a, b, c) ≥ ν◦′(f(a), f(b), f(c)), ∀a, b, c ∈ G.

Definition 4.5′[6]. Let (G,µ) and (G′, µ′) be two
vague groups. Then a mapping f : G→ G′ is called a
vague homomorphism if
µ(a, b, c) ≤ µ′(f(a), f(b), f(c)), ∀a, b, c ∈ G.

Remark 4.5. (a) If f : (G,µ) → (G′, µ′) is a vague
homomorphism, then f : (G, (µ, µc)) → (G′, (µ′, µ′c))
is an intuitionistic vague homomorphism.

(b) If f : (G, ◦) → (G′, ◦′) is an intuitionistic vague
homomorphism, then f : (G, [ ]◦)→ (G′, [ ]◦′)[resp. f :
(G,<> ◦)→ (G′, <> ◦′)] is an intuitionistic vague ho-
momorphism. Moreover, f : (G,µ◦)→ (G′, µ◦′) [resp.
f : (G, νc◦)→ (G, νc◦′)] is a vague homomorphism.

Proposition 4.6. Let (G, ◦) and (G′, ◦′) be two in-
tuitionistic vague groups w.r.t. IEG×G ∈ IE(G × G),
IEG ∈ IE(G) and IEG′×G′ ∈ IE(G′ × G′), IEG′ ∈
IE(G’), and let f : G → G′ be an intuitionistic vague
homomorphism. Then :

(a) If eG and eG′ are identities of (G, ◦) and (G′, ◦′),
respectively, then f(eG) = eG′ .

(b) For each a ∈ G, f−1(a) = f(a−1).

proof. (a) Let eG and eG′ be identities of (G, ◦) and
(G, ◦′), respectively, and let a ∈ G. Then ◦(a, eG, a) =
(1, 0). Since f : G → G′ is an intuitionistic vague
homomorphism,
◦′(f(a), f(eG), f(a)) = (1, 0).

On the other hand,
◦′(f(a), eG′ , f(a)) = (1, 0).

Thus, by Proposition 3.8,
µ0′(f(a), f(eG), f(a)) ∧ µ0′(f(a), eG′ , f(a))

= 1 ≤ µIEG′ (f(eG), eG′)
and
ν0′(f(a), f(eG), f(a)) ∨ ν0′(f(a), eG′ , f(a))

= 0 ≥ νIEG′ (f(eG), eG′).
So IEG′(f(eG), eG′) = (1, 0). Hence f(eG) = eG′ .

(b) Let a ∈ G. Then clearly ◦(a, a−1, eG) = (1, 0).
Since f : G → G′ is an intuitionistic vague homomor-
phism, by (a),
◦′(f(a), f(a−1), f(eG)) = ◦′(f(a), f(a−1), eG′) =

(1, 0).
Thus, by Proposition 3.8,
µ0′(f(a), f(a−1), eG′) ∧ µ0′(f(a), f−1(a), eG′)

= 1 ≤ µIEG′ (f(a−1, f−1(a)))
and
ν0′(f(a), f(a−1), eG′) ∨ ν0′(f(a), f−1(a), eG′)

= 0 ≥ νIEG′ (f(a−1, f−1(a))).
So IEG′(f(a−1, f−1(a))) = (1, 0). Hence f(a−1) =
f−1(a).

Definition 4.7. Let (G, ◦) and (G′, ◦′) be two in-
tuitionistic vague groups w.r.t. IEG×G ∈ IE(G ×
G), IEG ∈ IE(G) and IEG′×G′ ∈ IE(G′ × G′),
IEG′ ∈ IE(G′), respectively, and let f : G → G′

be an intuitionistic vague homomorphism. Then
crisp set {a ∈ X : f(a) = eG′} is called an
intuitionistic vague kernel of f , and it is denoted by
KerIVf .

Definition 4.8. Let IEX ∈ IE(X) and let IEY ∈
IE(Y). Then a mapping g : X → Y is said to be
intuitionistic vague injective w.r.t. IEX and IEY if
µIEX (g(a), g(b)) ≤ µIEY (a, b)

and
νIEX (g(a), g(b)) ≥ νIEY (a, b), ∀a, b ∈ X.

It is clear that an intuitionistic vague injective map-
ping is injective in the classical sense.

Definition 4.8′[6]. A mapping g : X → Y is said to
be vague injective w.r.t. EX ∈ E(X) and EY ∈ E(Y)
if EY (g(a), g(b)) ≤ EX(a, b), ∀a, b ∈ X.

Remark 4.8. (a) If g : X → Y is vague injective
w.r.t. EX ∈ E(X) and EY ∈ E(Y), then g : X → Y is
intuitionistic vague injective w.r.t. (EX , E c

X ) ∈ IE(X)
and (EY , E c

Y ) ∈ IE(Y).
(b) If g : X → Y is intuitionistic vague injec-

tive w.r.t. IEX ∈ IE(X) w.r.t. [ ]IEX ∈ IE(X)
and [ ]IEY ∈ IE(Y) [resp. <> IEX ∈ IE(X) and
<> IEY ∈ IE(Y)]. Furthermore, g is vague injective
w.r.t. µIEX ∈ E(X) and µIEY ∈ E(Y) [resp. ν c

IEX
∈

E(X)] and ν c
IEY
∈ E(Y)].

Proposition 4.9. Let (G, ◦) and (G, ◦′) be two in-
tuitionistic vague groups w.r.t. IEG×G ∈ IE(G × G),
IEG ∈ IE(G) and IEG′×G′ ∈ IE(G′ × G′), IEG′ ∈
IE(G′), respectively, and let f : G → G′ be an intu-
itionistic vague homomorphism. Let eG be the identity
of (G, ◦).

(a) f is injective if and only if KerIVf = {eG}.

239
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ν◦(eL, a−1
L , a−1

L ) ∨ ν◦(a, a−1
L , u) ∨ ν◦(a, eL, w) ∨

ν◦(w, a−1
L , t) = 0 ≥ νIEG(t, u).

Thus IEG(t, u) = (1, 0), i.e. t = u. So ◦(w, a−1
L , u) =

(1, 0).
So
µ◦(a, a−1

L , u)∧µ◦(u, u, v)∧µ◦(u, a, w)∧µ◦(w, a−1
L , u)

= 1 ≤ µIEG(v, u)
and
ν◦(a, a−1

L , u)∨ ν◦(u, u, v)∨ ν◦(u, a, w)∨ ν◦(w, a−1
L , u)

= 0 ≥ νIEG(v, u).
Hence IEG(v, u) = (1, 0), i.e. v = u. Therefore
◦(u, u, u) = (1, 0). By Proposition 3.7, IEG(u, eL) =
(1, 0), i.e., u = eL.

Thus ◦(a, a−1
L , eL) = (1, 0) (3.6)

Now we shall show that ◦(a, eL, a) = (1, 0), i.e., eL
is also a right identity of (G, ◦), i.e., eL is a two-sided
identity of (G, ◦). Let a ∈ G. Then, it is clear that
∃u ∈ G such that ◦(a, eL, u) = (1, 0).

Thus, by (3.6),
µ◦(a−1

L , a, eL) ∧ µ◦(a, eL, u) ∧ µ◦(a, a−1
L , eL) ∧

µ◦(eL, a, a) = 1 ≤ µIEG(u, a)
and
ν◦(a−1

L , a, eL) ∨ ν◦(a, eL, u) ∨ ν◦(a, a−1
L , eL) ∨

ν◦(eL, a, a) = 0 ≥ νIEG(u, a).
So IEG(u, a) = (1, 0), i.e., u = a. Therefore
◦(a, eL, a) = (1, 0).

Since eL is a two-sided identity of (G, ◦), by using
the hypothesis and (3.6), we can immediately see that
(IV G.3) is satisfied. Hence (G, ◦) is an intuitionistic
vague group.

Theorem 3.11 Let (G, ◦) be an intuitionistic vague
semigroup w.r.t. IEG×G ∈ IE(G × G) and IEG ∈
IE(G). Then (G, ◦) is an intuitionistic vague group if
and only if

(i) ∀a, b ∈ G,∃x ∈ G such that ◦(a, x, b) = (1, 0),
(ii) ∀a, b ∈ G,∃y ∈ G such that ◦(y, a, b) = (1, 0).

Proof. (⇒) : Suppose (G, ◦) is an intuitionistic vague
group and let a, b ∈ G. Then ∃x, u ∈ G such that
◦(a−1, b, x) = ◦(a, x, u) = (1, 0).

Thus
µ◦(a−1, b, x)∧µ◦(a, x, u)∧µ◦(a, a−1, e)∧µ◦(e, b, b) =

1 ≤ µIEG(u, b)
and
ν◦(a−1, b, x)∨ ν◦(a, x, u)∨ ν◦(a, a−1, e)∨ ν◦(e, b, b) =

0 ≥ νIEG(u, b).
So IEG(u, b) = (1, 0), i.e. u = b. Hence ◦(a, x, b) =
(1, 0).
On the other hand, for a, b ∈ G, ∃y, v ∈ G such that
◦(b, a−1, y) = ◦(y, a, v) = (1, 0).

Then
µ◦(a−1, a, e)∧µ◦(b, e, b)∧µ◦(b, a−1, y)∧µ◦(y, a, v) =

1 ≤ µIEG(b, v)
and

ν◦(a−1, a, e) ∨ ν◦(b, e, b) ∨ ν◦(b, a−1, y) ∨ ν◦(y, a, v) =
1 ≥ νIEG(b, v).
Thus IEG(b, v) = (1, 0), i.e., b = v. So ◦(y, a, b) =
(1, 0).

(⇐) Suppose the necessary conditions hold. Let
m ∈ G be fixed and let a ∈ G. Then ∃e∗, x ∈ G
such that
◦(e∗,m,m) = ◦(m,x, a) = (1, 0).

Since ◦ is an intuitionistic fuzzy mapping, for a ∈ G,
∃u ∈ G such that ◦(e∗, a, u) = (1, 0). Thus
µ◦(m,x, a)∧µ◦(e∗, a, u)∧µ◦(e∗,m,m)∧µ◦(m,x, a) =

1 ≤ µIEG(u, a)
and
ν◦(m,x, a)∨ν◦(e∗, a, u)∨ν◦(e∗,m,m)∨ν◦(m,x, a) =

0 ≥ νIEG(u, a).
So IEG(u, a) = (1, 0), i.e., u = a. Hence ◦(e∗, a, a) =
(1, 0), i.e., e∗ is a left identity of (G, ◦).

On the other hand, by the hypothesis, for each a ∈ G,
∃w ∈ G such that ◦(w, a, e) = (1, 0). Thus w is a left
inverse of a. So, the required result is immediately
obtained from Theorem 3.10. This completes the
proof.

4. Intuitionistic vague subgroups and
intuitionistic vague homomorphisms

For a given intuitionistic fuzzy equality IEX on X
and for a crisp subset H of X, the restriction of the
complex mapping IEX on X and for a crisp subset H
of X, the restriction of the complex mapping IEX on
H × H, denoted by IEHX , is clearly an intuitionistic
fuzzy equality on H. For a given intuitionistic vague
binary operation f on X, we say that a crisp subset B
of X is intuitionistic vague closed under f if it satisfies
the following condition :

(IVGC) f(a, b, c) = (1, 0) ⇒ c ∈ B,∀ a, b, c ∈ X.
For given intuitionistic vague operation f on X w.r.t.

IEX×X ∈ IE(X × X) and IEX ∈ IE(X), if a crisp sub-
set H of X is intuitionistic vague closed under f , then
it is easily seen that f |H×H×H is an intuitionistic
vague operation on H and f |H×H×H preserves the
transitive properties of f .

Definition 4.1. Let (G, ◦) be an intuitionistic vague
group w.r.t. IEG×G ∈ IE(G × G) and IEG ∈ IE(G),
and let H be a nonempty crisp subset of G that is
intuitionistic vague closed under ◦. Then H is called
an intuitionistic vague subgroup of G if (H, ◦|H×H×H)
is itself an intuitionistic vague group.

For a given fuzzy equality EX on X and for a crisp
subset H of X, the restriction of the complex mapping
EX on H×H, denoted by EHX , is clearly a fuzzy equal-
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ity on H. For a given vague binary operation f on X,
we say that a crisp subset B of X is vague closed under
f if it satisfies the following condition :
(VGC) f(a, b, c) = (1, 0) ⇒ c ∈ B, ∀a, b ∈ B, ∀c ∈
X.

For given vague operation f on X w.r.t. EX×X ∈
E(X × X) and EX ∈ E(X), if a crisp subset H of X
is vague closed under f , then it is easily seen that
f |H×H×H is a vague operation on H and f |H×H×H
preserves the transitive properties of f .

Definition 4.1′[6]. Let (G, ◦) be a vague group w.r.t.
IEG×G ∈ IE(G × G) and IEG ∈ IE(G), and let H
be a nonempty crisp subset of G that is vague closed
under ◦. Then H is called a vague subgroup of G if
(H, ◦|H×H×H) is itself a vague group.

Remark 4.2. (a) Let (G, ◦) be a vague group w.r.t.
EG×G ∈ E(G × G) and EG ∈ E(G), and let H be
a nonempty crisp subset of G. If (H, ◦|H×H×H) is
a vague subgroup of G, then (H, (µ◦, µc◦)|H×H×H) is
an intuitionistic vague subgroup of the intuitionistic
vague group (G, (µ◦, µc◦)) w.r.t. (µEG×G , µ

c
EG×G

) ∈
IE(G × G) and (µEG , µ

c
EG

) ∈ IE(G).
(b) Let (G, ◦) be an intuitionistic vague group w.r.t.

IEG×G ∈ IE(G × G) and IEG ∈ IE(G), and let H
be a nonempty crisp subset of G. If (H, ◦|H×H×H)
is an intuitionistic vague subgroup of (G, ◦), then
(H, [ ] ◦ |H×H×H) [resp. (H,<> ◦|H×H×H)] is
an intuitionistic vague subgroup of the intuitionis-
tic vague group (G, [ ]◦) [resp. (G,<> ◦)] w.r.t.
[ ]IEG×G ∈ IE(G × G) and [ ]IEG ∈ IE(G) [resp.
<> IEG×G ∈ IE(G × G) and <> IEG ∈ IE(G)].
Moreover, (H,µ◦|H×H×H)[resp. (H, νc◦|H×H×H)] is
a vague subgroup of the vague group (G,µ◦)[resp.
(G, νc◦)] w.r.t. µIEG×G ∈ E(G × G) and µIEG ∈
E(G)[resp. ν c

IEG×G
∈ E(G × G) and ν c

IEG
∈ E(G)].

Theorem 4.3. Let (G, ◦) be an intuitionistic vague
group w.r.t. IEG×G ∈ IE(G × G) and IEG ∈ IE(G),
and let H be a nonempty crisp subset of G. Then H
is an intuitionistic vague subgroup of G if and only if
(∀a, b ∈ H)(∀c ∈ G)(◦(a, b−1, c) = (1, 0)⇒ c ∈ H).

Proof (⇒) : Suppose H be an intuitionistic vague
subgroup of G. Let eG[resp. eH ] be an identity of
(G, ◦)[resp. (H, ◦|H×H×H)]. Then, for a ∈ H, it is
clear that
◦|H×H×H(a, eH , a) = ◦(a, eH , a) = ◦(a, eG, a) =

(1, 0)
By Proposition 3.8,
µ0(a, eH , a) ∧ µ0(a, eG, a) = 1 ≤ µIEG(eH , eG)

and
ν0(a, eH , a) ∨ ν0(a, eG, a) = 0 ≥ νIEG(eH , eG).

Thus IEG(eH , eG) = (1, 0), i.e., eH = eG. For b ∈ H,
let b−1

H be the inverse of b in (H, ◦|H×H×H). Then, it
is clear that
◦|H×H×H(b, b−1

H , eH) = ◦(b, b−1
H , eH) = ◦(b, b−1, eH)

= (1, 0).
Thus
µ0(b, b−1

H , eH) ∧ µ0(b, b−1, eH) = 1 ≤ µIEG(b−1
H , b−1)

and
ν0(b, b−1

H , eH) ∨ ν0(b, b−1, eH) = 0 ≥ νIEG(b−1
H , b−1).

So IEG(b−1
H , b−1) = (1, 0), i.e., b−1

H = b−1.
Now, for a, b−1 ∈ H and c ∈ G, suppose
◦(a, b−1, c) = (1, 0). Since a, b−1 ∈ H and H is in-
tuitionistic vague closed under ◦, by (IV GC), c ∈ H.

(⇐) : Suppose the necessary condition holds. Since
H 6= ∅, ∃u ∈ H. Then ◦(u, u−1, eG) = (1, 0). Thus,
by the hypothesis, eG ∈ H. Let a ∈ H. Then clearly
◦(eG, a−1, a−1) = (1, 0). Thus, by the hypothesis,
a−1 ∈ H.

For any a, b ∈ H and each c ∈ G, suppose ◦(a, b, c) =
(1, 0). Then ◦(a, b, c) = ◦(a, (b−1)−1, c) = 1. Since
b−1 ∈ H, by the hypothesis, c ∈ H. Thus H is in-
tuitionistic vague closed under ◦. Since (G, ◦) is an
intuitionictic vague group, it can easily be be seen that
(H, ◦|H×H×H) satisfies the condition (IVG. 1) w.r.t.
IEG×GH × H ∈ IE(H × H) and IEG

H ∈ IE(H).
Hence H is an intuitionistic vague subgroup of G.

Theorem 4.4. Let (G, ◦) be an intuitionistic vague
group w.r.t. IEG×G ∈ IE(G × G) and IEG ∈ IE(G),
and let H be a nonempty crisp subset of G. Then H
is an intuitionistic vague subgroup of G if and only if
it satisfies the following conditions:

(i) H is intuitionistic vague closed under ◦
(ii) For each a ∈ H, a−1 ∈ H.

Proof The proof can be obtained in a similar manner
to that of the classical case in [8]. Thus it is omit-
ted.

The following is the immediate result of Theorem 4.4.

corollary 4.4-1. Let (G, ◦) be an intuitionistic vague
w.r.t. IEG×G ∈ IE(G × G) and IEG ∈ IE(G), and let
{Hα}α∈Γ be a nonempty family of intuitionistic vague
subgroup of G such that

⋂
α∈Γ

Hα 6= ∅. Then
⋂
α∈Γ

Hα

is an intuitionistic vague subgroup of G.

The following is the immediate result of corollary
4.4-1.

corollary 4.4-2. Let (G, ◦) be an intuitionistic
vague group w.r.t. IEG×G ∈ IE(G × G) and
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IEG ∈ IE(G), and let H be a nonempty crisp sub-
set of G. Let {Hα}α∈Γ be the family of all in-
tuitionistic vague subgroups of G containing H.
Then

⋂
α∈Γ

Hα is an intuitionistic vague subgroup of

G. In this case,
⋂
α∈Γ

Hα is called the intuitionistic

vague subgroup of G generated by H, and it is denoted
by < H >.

Definition 4.5. Let (G, ◦) and (G′, ◦′) be two intu-
itionistic vague groups. Then a mapping(in the classi-
cal sense) f : G → G′ is called an intuitionistic vague
homomorphism if it satisfies the following conditions :
µ◦(a, b, c) ≤ µ◦′(f(a), f(b), f(c))

and
ν◦(a, b, c) ≥ ν◦′(f(a), f(b), f(c)), ∀a, b, c ∈ G.

Definition 4.5′[6]. Let (G,µ) and (G′, µ′) be two
vague groups. Then a mapping f : G→ G′ is called a
vague homomorphism if
µ(a, b, c) ≤ µ′(f(a), f(b), f(c)), ∀a, b, c ∈ G.

Remark 4.5. (a) If f : (G,µ) → (G′, µ′) is a vague
homomorphism, then f : (G, (µ, µc)) → (G′, (µ′, µ′c))
is an intuitionistic vague homomorphism.

(b) If f : (G, ◦) → (G′, ◦′) is an intuitionistic vague
homomorphism, then f : (G, [ ]◦)→ (G′, [ ]◦′)[resp. f :
(G,<> ◦)→ (G′, <> ◦′)] is an intuitionistic vague ho-
momorphism. Moreover, f : (G,µ◦)→ (G′, µ◦′) [resp.
f : (G, νc◦)→ (G, νc◦′)] is a vague homomorphism.

Proposition 4.6. Let (G, ◦) and (G′, ◦′) be two in-
tuitionistic vague groups w.r.t. IEG×G ∈ IE(G × G),
IEG ∈ IE(G) and IEG′×G′ ∈ IE(G′ × G′), IEG′ ∈
IE(G’), and let f : G → G′ be an intuitionistic vague
homomorphism. Then :

(a) If eG and eG′ are identities of (G, ◦) and (G′, ◦′),
respectively, then f(eG) = eG′ .

(b) For each a ∈ G, f−1(a) = f(a−1).

proof. (a) Let eG and eG′ be identities of (G, ◦) and
(G, ◦′), respectively, and let a ∈ G. Then ◦(a, eG, a) =
(1, 0). Since f : G → G′ is an intuitionistic vague
homomorphism,
◦′(f(a), f(eG), f(a)) = (1, 0).

On the other hand,
◦′(f(a), eG′ , f(a)) = (1, 0).

Thus, by Proposition 3.8,
µ0′(f(a), f(eG), f(a)) ∧ µ0′(f(a), eG′ , f(a))

= 1 ≤ µIEG′ (f(eG), eG′)
and
ν0′(f(a), f(eG), f(a)) ∨ ν0′(f(a), eG′ , f(a))

= 0 ≥ νIEG′ (f(eG), eG′).
So IEG′(f(eG), eG′) = (1, 0). Hence f(eG) = eG′ .

(b) Let a ∈ G. Then clearly ◦(a, a−1, eG) = (1, 0).
Since f : G → G′ is an intuitionistic vague homomor-
phism, by (a),
◦′(f(a), f(a−1), f(eG)) = ◦′(f(a), f(a−1), eG′) =

(1, 0).
Thus, by Proposition 3.8,
µ0′(f(a), f(a−1), eG′) ∧ µ0′(f(a), f−1(a), eG′)

= 1 ≤ µIEG′ (f(a−1, f−1(a)))
and
ν0′(f(a), f(a−1), eG′) ∨ ν0′(f(a), f−1(a), eG′)

= 0 ≥ νIEG′ (f(a−1, f−1(a))).
So IEG′(f(a−1, f−1(a))) = (1, 0). Hence f(a−1) =
f−1(a).

Definition 4.7. Let (G, ◦) and (G′, ◦′) be two in-
tuitionistic vague groups w.r.t. IEG×G ∈ IE(G ×
G), IEG ∈ IE(G) and IEG′×G′ ∈ IE(G′ × G′),
IEG′ ∈ IE(G′), respectively, and let f : G → G′

be an intuitionistic vague homomorphism. Then
crisp set {a ∈ X : f(a) = eG′} is called an
intuitionistic vague kernel of f , and it is denoted by
KerIVf .

Definition 4.8. Let IEX ∈ IE(X) and let IEY ∈
IE(Y). Then a mapping g : X → Y is said to be
intuitionistic vague injective w.r.t. IEX and IEY if
µIEX (g(a), g(b)) ≤ µIEY (a, b)

and
νIEX (g(a), g(b)) ≥ νIEY (a, b), ∀a, b ∈ X.

It is clear that an intuitionistic vague injective map-
ping is injective in the classical sense.

Definition 4.8′[6]. A mapping g : X → Y is said to
be vague injective w.r.t. EX ∈ E(X) and EY ∈ E(Y)
if EY (g(a), g(b)) ≤ EX(a, b), ∀a, b ∈ X.

Remark 4.8. (a) If g : X → Y is vague injective
w.r.t. EX ∈ E(X) and EY ∈ E(Y), then g : X → Y is
intuitionistic vague injective w.r.t. (EX , E c

X ) ∈ IE(X)
and (EY , E c

Y ) ∈ IE(Y).
(b) If g : X → Y is intuitionistic vague injec-

tive w.r.t. IEX ∈ IE(X) w.r.t. [ ]IEX ∈ IE(X)
and [ ]IEY ∈ IE(Y) [resp. <> IEX ∈ IE(X) and
<> IEY ∈ IE(Y)]. Furthermore, g is vague injective
w.r.t. µIEX ∈ E(X) and µIEY ∈ E(Y) [resp. ν c

IEX
∈

E(X)] and ν c
IEY
∈ E(Y)].

Proposition 4.9. Let (G, ◦) and (G, ◦′) be two in-
tuitionistic vague groups w.r.t. IEG×G ∈ IE(G × G),
IEG ∈ IE(G) and IEG′×G′ ∈ IE(G′ × G′), IEG′ ∈
IE(G′), respectively, and let f : G → G′ be an intu-
itionistic vague homomorphism. Let eG be the identity
of (G, ◦).

(a) f is injective if and only if KerIVf = {eG}.
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(b) If ◦ is intuitionistic transitive if first order, and
f is intuitionistic vague injective and surjective, then
the mapping f−1 : G′ → G is an intuitionistic vague
homomorphism.

Proof. (a) The proof is the analogue of the classical
case in[8].

(b) Suppose ◦ is intuitionistic transitive of first order,
and f is an intuitionistic vague injective and surjective.
Let u, v, w ∈ G′. Since f is surjective and ◦ is strong,
∃a, b, c ∈ G such that a = f−1(u), b = f−1(v) and
◦(a, b, c) = (1, 0). Since f is an intuitionistic vague
homomorphism,
◦′(f(a), f(b), f(c)) = ◦′(u, v, f(c)) = (1, 0).

Since ◦ is an intuitionistic fuzzy mapping, by (if. 2),
µ◦′(u, v, w) = µ◦′(u, v, w) ∧ µ◦′(u, v, f(c)) ≤

µIEG′ (w, f(c)).
and (4.1)
ν◦′(u, v, w) = ν◦′(u, v, w) ∨ ν◦′(u, v, f(c)) ≥

νIEG′ (w, f(c)).
On the other hand,
µIEG′ (w, f(c)) = µIEG′ (f(f−1(w)), f(c))[Since f is

bijective]
≤ µIEG(f−1(w), c) [Since f is intuitionistic vague in-

jective]
= µ◦(f−1(u), f−1(v), c) ∧ µIEG(f−1(w), c) [Since
◦(f−1(u), f−1(v), c) = (1, 0)]
≤ µ◦(f−1(u), f−1(v), f−1(w)) [Since ◦ is intuitionis-

tic transitive of first order]
and (4.2)
νIEG′ (w, f(c)) = νIEG′ (f(f−1(w)), f(c))
≥ νIEG(f−1(w), c)
= ν◦(f−1(u), f−1(v), c) ∨ νIEG(f−1(w), c)
≥ ν◦(f−1(u), f−1(v), f−1(w))

Thus, by (4.1) and (4.2),
µ◦′(u, v, w) ≤ µ◦(f−1(u), f−1(v), f−1(w))

and
ν◦′(u, v, w) ≥ ν◦(f−1(u), f−1(v), f−1(w)).

Hence f−1 : G′ → G is an intuitionistic vague homo-
morphism.

Proposition 4.10. Let (G, ◦) and (G′, ◦′) be two
intuitionistic vague groups w.r.t. IEG×G ∈ IE(G),
IEG ∈ IE(G) and IEG′×G′ ∈ IE(G′ × G′) and IEG′ ∈
IE(G′), respectively, and let f : G → G′ be an intu-
itionistic vague homomorphism. Then :

(a) KerIVf is an intuitionistic vague subgroup of G.
(b) For any intuitionistic vague subgroup H of G,

f(H) is an intuitionistic vague subgroup of G′.
(c) For any intuitionistic vague subgroup K of G′,

f−1(K) is an intuitionistic vague subgroup of G.

Proof. (a) For any a, b ∈ KerIVf and each c ∈ G,
suppose ◦(a, b−1, c) = (1, 0). Then f(a) = f(b), i.e.,
f−1(a) = f−1(b). Thus

◦′((f(a), f−1(a), eG′) = ◦′(f(a), f−1(b), eG′) = (1, 0)
Since f is an intuitionistic vague homomorphism, by
Proposition 4.8(b) and the hypothesis,
◦′((f(a), f−1(b), f(c)) = ◦′(f(a), f−1(b), f(c)) =

(1, 0).
Thus
µ◦′((f(a), f−1(b), eG′) ∧mu◦′(f(a), f−1(b), f(c))

= 1 ≤ µIEG′ (f(c), eG′)
and
ν◦′((f(a), f−1(b), eG′) ∨ nu◦′(f(a), f−1(b), f(c))

= 0 ≥ νIEG′ (f(c), eG′).
So IEG′(f(c), eG′) = (1, 0), i.e., f(c) = eG′ . Hence
c ∈ KerIVf . Therefore, by Theorem 4.3, KerIVf is an
intuitionistic vague subgroup of G.

(b) Suppose H is an intuitionistic vague subgroup
of G. For any a, b ∈ f(H) and each c ∈ G′. Sup-
pose ◦′(a, b−1, c) = (1, 0). ◦ is an intuitionistic fuzzy
mapping, ∃µ, ν ∈ H and w ∈ G such that f(u) = a
f(v) = b and ◦(u, v−1, w) = (1, 0). Since H is an
intuitionistic vague subgroup of G, by Theorem 4.3,
w ∈ H. Then f(w) ∈ f(h). Since f is an intuitionistic
vague homomorphism, by Proposition 4.8(b),
◦′(f(u), f(v−1), f(w)) = ◦′(f(u), f(v)−1, f(w))

= ◦′(a, b−1, f(w)) = (1, 0).
Thus
µ◦′(a, b−1, f(w))∧µ◦′(a, b−1, c) = 1 ≤ µIEG′ (f(w), c)

and
ν◦′(a, b−1, f(w))∨ν◦′(a, b−1, c) = 0 ≥ νIEG′ (f(w), c).

So IEG′(f(w), c) = (1, 0), i.e., c = f(w). Since w ∈ H,
c ∈ f(H). Hence, by Theorem 4.3, f(H) is an intu-
itionistic vague subgroup of G′.

(c) It can be proved in a similar manner to the proof
of (b).

For a mapping f : X → Y , let Imf = {f(a) ∈ Y :
a ∈ X}. Then the following is the immediate result of
Proposition 4.14(b).

Corollary 4.14. Let (G, ◦) and (G′, ◦′) be two intu-
itionistic vague groups w.r.t. IEG×G ∈ IE(G × G),
IEG ∈ IE(G) and IEG′×G′ ∈ IE(G′ × G′), IEG′ ∈
IE(G′), respectively, and let f : G → G′ be an in-
tuitionistic vague homomorphism. Then Imf is an
intuitionistic vague subgroup of G′.
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