DOI QR코드

DOI QR Code

Silver Nanoparticles Effect on Antimicrobial and Antifungal Activity of New Heterocycles

  • Kandile, Nadia G. (Chemistry Department, Faculty of Women, Ain Shams University) ;
  • Zaky, Howida T. (Chemistry Department, Faculty of Women, Ain Shams University) ;
  • Mohamed, Mansoura I. (Chemistry Department, Faculty of Women, Ain Shams University) ;
  • Mohamed, Hemat M. (Chemistry Department, Faculty of Women, Ain Shams University)
  • Received : 2010.04.12
  • Accepted : 2010.09.16
  • Published : 2010.12.20

Abstract

In this study 1-[4-(2-methoxy benzyl)-6-aryl-pyridazin-3(2H)-ylidene] hydrazines were used for the synthesis of new heterocyclic systems such as thiazolidine, phthalazine, pyrazolo, tetrazolo, hydrazide and new pyridazine derivatives to explore the effect of silver nanoparticles on their biological activity efficiency. Structures of the new heterocycles were characterized by the aid of several analytical techniques including; $^1H$-NMR, FTIR and mass spectra. Silver nanoparticles were synthesized by a simple methodology and the formation of silver nanoparticles was confirmed by transmission electron microscopy (TEM) and UV studies. Most of the new prepared heterocycles were evaluated in vitro as new antimicrobial agents. Combination effects of the silver nanoparticles on the antimicrobial activity of the new heterocycles were investigated using the disk diffusion method. Compound 10a exhibited the strongest enhancing effect of silver nanoparticles solution against Aspergillus flavus and Candida albicans.

Keywords

References

  1. Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. J. Phys. Chem. 2003, B 107(3), 668.
  2. Nurmi, J. T.; Tratnyek, P. G.; Sarathy, V.; Baer, D. R.; Amonette, J. E.; Pecher, K.; Wang, C.; Linehan, J. C.; Matson, D. W.; Penn, R. L.; Driessen, M. D. Environ. Sci. Technol. 2004, 39(5), 1221.
  3. Sondi, I.; Salopek-Sondi, B. J. Colloid Interface Sci. 2004, 275(1), 177. https://doi.org/10.1016/j.jcis.2004.02.012
  4. Navarro, E.; Piccapietra, F.; Wagner, B.; Marconi, F.; Kaegi, R.; Odzak, N.; Sigg, L.; Behra, R. Environ. Sci. Technol. 2008, 42(23), 8959. https://doi.org/10.1021/es801785m
  5. Carlson, C.; Hussain, S. M.; Schrand, A. M.; Braydich-Stolle, K. L.; Hess, K. L.; Jones, R. L.; Schlager, J. J. J. Phys. Chem. B 2008, 112(43), 13608. https://doi.org/10.1021/jp712087m
  6. Choi, O.; Hu, Z. Sci. Technol. 2008, 42, 4583. https://doi.org/10.1021/es703238h
  7. Jiang, W.; KimBetty, Y. S.; Rutka, J. T.; ChanWarren, C. W. Nat. Nanotechnol. 2008, 3(3), 145. https://doi.org/10.1038/nnano.2008.30
  8. Choi, O.; Deng, K.; Kim, N.; Ross, L.; Hu, Z. Water Res. 2008, 42, 3066. https://doi.org/10.1016/j.watres.2008.02.021
  9. Kim, T. N.; Feng, Q. L.; Kim, J. O.; Wu, J.; Wang, H.; Chen, G. C.; Cui, F. Z. J. Mater. Sci. Mater. Med. 1998, 9, 129. https://doi.org/10.1023/A:1008811501734
  10. Uchida, M. Chem. Ind. 1995, 46, 48.
  11. Grier, N. Philadelphia 1983, 375.
  12. Lehninger, A.; Nelson, D.; Cox, M. Principles of Biochemistry, 2nd ed.; Worth: New York, 1993.
  13. Liau, S.; Read, D.; Pugh, W.; Furr, J.; Russell, A. Lett. Appl. Microbiol. 1997, 25, 279. https://doi.org/10.1046/j.1472-765X.1997.00219.x
  14. Davies, R.; Etris, S. Catal. Today 1997, 35, 87.
  15. Kowshik, M.; Ashtaputre, S.; Kharrazi, S. Nanotechnology 2003, 14, 95. https://doi.org/10.1088/0957-4484/14/1/321
  16. Souza, G. I. H.; Marcato, P. D.; Duran, N.; Esposito, E. In IX National Meeting of Environmental Microbiology; Curtiba: PR (Brazil), 2004 Abstr.; 25.
  17. Duran, N.; Marcato, P. D.; Alves, O. L.; Souza, G. J. Nanotechnology 2005, 3, 8.
  18. Cho, K. H.; Park, J. E.; Osaka,T.; Park, S. G. Electrochimica Acta 2005, 51, 956. https://doi.org/10.1016/j.electacta.2005.04.071
  19. Wright, G. D. Chem. Biol. 2000, 7, 127. https://doi.org/10.1016/S1074-5521(00)00126-5
  20. Wright, G. D. Adv. Drug Deliv. Rev. 2005, 57, 1451. https://doi.org/10.1016/j.addr.2005.04.002
  21. Zou, X. J.; Lai, L. H.; Jin, G. Y.; Zhang, Z. X. J. Agric. Food Chem. 2002, 50(6), 3757. https://doi.org/10.1021/jf0201677
  22. Mark, S.; John, C. V.; Todd, A. B.; Jennifer, M.; Mattew, J. L.; Adam, G.; Biswanath, D.; Surian, E. V.; Lily, C. H.; Jeff, R.; Steve, B.; Eric, S.; Michael, J. Bioorg. Med. Chem. Lett. 2006, 16, 4257. https://doi.org/10.1016/j.bmcl.2006.05.072
  23. Kleemann, A. J. Pharmazeutische Wirkstoffe, Syntheses Patente, Anweedungen; Thieme Verlag: Stuttgart, 1978.
  24. Elias, O.; Karolyhazy, L.; Horvath, G.; Harmt, V.; Matyus, P. J. Mol. Struct. Theochem. 2003, 666-667, 625. https://doi.org/10.1016/j.theochem.2003.08.087
  25. Orru, R. V. A.; De Greef, M. Synthesis 2003, 10, 1471.
  26. Bienayme, H.; Oddon, C. G.; Schmitt, P. Chem. Eur. J. 2000, 6, 332.
  27. Vigorita, M. G.; Ottana, R.; Monforte, F.; Maccari, R.; Trovato, A.; Monforte, M. T.; Taviano, M. F. Bioorg. Med. Chem. Lett. 2001, 11, 2791. https://doi.org/10.1016/S0960-894X(01)00476-0
  28. Chande, M. S.; Suryanarayan,V. J. Chem. Res. 2005, 6, 345.
  29. Kavitha, C. V.; Basappa, S.; Swamy, N.; Mantelingu, K.; Doreswamy, S.; Sridhar, M. A.; Prasad, S.; Rangappa, K. S. Bioorg. Med. Chem. 2006, 14, 2290. https://doi.org/10.1016/j.bmc.2005.11.017
  30. Shiradkar, M.; Shivaprasad, H. N. Asian J. Chem. 2006, 18, 331.
  31. Mohamed, M. I. J. Bulg. Chem. Commun. 2004, 36(4), 241.
  32. Mohamed, M. I.; Zaky, H.T.; Kandile, N. G. J. Chin Chem. Soc. 2004, 51, 963.
  33. Mohamed, M. I. J. Bulg. Chem .Commun. 2007, 39(2), 152.
  34. Kandile, N. G.; Mohamed, M. I.; Zaky, H. T.; Mohamed, H. M. European Journal of Medicinal Chemistry 2009, 44, 1989. https://doi.org/10.1016/j.ejmech.2008.09.047
  35. Mohamed, M. I.; Zaky, H. T.; Mohamed, H. M.; Kandile, N. G. Afinidad 2005, 62(515), 48.
  36. Haider, N.; Kabicher, T.; Kaferbock , J.; Plank, A. Molecules 2007, 12, 1900. https://doi.org/10.3390/12081900
  37. Cmoch, P. Magn. Reson. Chem. 2002, 40, 507. https://doi.org/10.1002/mrc.1055
  38. Katrusiak, A.; Skierska, U.; Katrusiak, A. J. Mol. Struc. 2005, 751, 71.
  39. Yakutik, I. M.; Shevchenko, G. P.; Rakhmanov, S. K. The Formation of Mono Disperse Spherical Silver Particles,Colloids and Surfaces A:Physicochemical and Engineering Aspects; 2004; pp 175.
  40. Henglein, A. J. Phys. Chem. 1993, 97, 5457. https://doi.org/10.1021/j100123a004
  41. Sastry, M.; Mayya, K. S.; Bandyopadhyay, K. Colloid. Surf. A 1997, 127, 221. https://doi.org/10.1016/S0927-7757(97)00087-3
  42. Sastry, M.; Patil, V.; Sainkar, S. R. J.Phys. Chem. B 1998, 102, 1404. https://doi.org/10.1021/jp9719873
  43. Jawetz, E.; Melnick, J. L.; Adelberg, E. A. Review of Medical Microbiology; Lang Medical Publication: Los Altos, California, 1974.
  44. Grayer, J. R.; Harbone, J. B. Phytochemistry 1994, 37, 19. https://doi.org/10.1016/0031-9422(94)85005-4
  45. Muanza, D. N.; Kim, B. W.; Euler, K. L.; Williams, L. Pharm. Biol. 1994, 32, 337. https://doi.org/10.3109/13880209409083012
  46. Irobi, O. N.; Moo-Young, M.; Anderson, W. A. Pharm. Biol. 1996, 34, 87. https://doi.org/10.1076/phbi.34.2.87.13201

Cited by

  1. ChemInform Abstract: Silver Nanoparticles Effect on Antimicrobial and Antifungal Activity of New Heterocycles. vol.42, pp.18, 2011, https://doi.org/10.1002/chin.201118138
  2. Antiproliferative effects of metal complexes of new isatin hydrazones against HCT116, MCF7 and HELA tumour cell lines vol.27, pp.3, 2012, https://doi.org/10.3109/14756366.2011.588950
  3. Broad-spectrum bioactivities of silver nanoparticles: the emerging trends and future prospects vol.98, pp.5, 2014, https://doi.org/10.1007/s00253-013-5473-x
  4. Fungi as an efficient mycosystem for the synthesis of metal nanoparticles: progress and key aspects of research vol.37, pp.11, 2015, https://doi.org/10.1007/s10529-015-1901-6
  5. Synthesis of new Schiff bases bearing 1,2,4-triazole, thiazolidine and chloroazetidine moieties and their pharmacological evaluation vol.32, pp.1, 2017, https://doi.org/10.1080/14756366.2016.1238365
  6. Role of stabilizing agents in the formation of stable silver nanoparticles in aqueous solution: Characterization and stability study vol.38, pp.5, 2017, https://doi.org/10.1080/01932691.2016.1185374
  7. Antibacterial Applications of Silver Nanoparticles vol.754, pp.1662-9752, 2013, https://doi.org/10.4028/www.scientific.net/MSF.754.131
  8. Microwave-assisted and thermal synthesis of nanosized thiazolyl-phenothiazine derivatives and their biological activities pp.1568-5675, 2018, https://doi.org/10.1007/s11164-018-3594-7
  9. -indoline Derivatives as Antitumor Agents vol.56, pp.2, 2018, https://doi.org/10.1002/jhet.3410
  10. Application of Nanomaterials in Heterocyclic Chemistry vol.85, pp.3, 2010, https://doi.org/10.3987/rev-11-725
  11. Facile method for the synthesis of silver nanoparticles using 3-hydrazino-isatin derivatives in aqueous methanol and their antibacterial activity vol.9, pp.None, 2014, https://doi.org/10.2147/ijn.s58571
  12. Solvothermal synthesis and characterization of silver nanoparticles vol.2, pp.3, 2014, https://doi.org/10.12989/anr.2014.2.3.147
  13. Design, synthesis and antimicrobial evaluation of dihydropyrimidone based organic-inorganic nano-hybrids vol.5, pp.58, 2010, https://doi.org/10.1039/c5ra08765a
  14. Facile Synthesis, Characterization, and Antimicrobial Evaluation of Novel Heterocycles, Schiff Bases, and N-Nucleosides Bearing Phthalazine Moiety vol.64, pp.5, 2010, https://doi.org/10.1248/cpb.c15-01005
  15. Potential of Nanoparticles in Combating Candida Infections vol.16, pp.5, 2010, https://doi.org/10.2174/1570180815666181015145224
  16. In vitro biocompatibility evaluation of radiolytically synthesized silver/polyvinyl hydrogel nanocomposites for wound dressing applications vol.35, pp.4, 2010, https://doi.org/10.1177/0883911520944428
  17. In silico prediction of silver nitrate nanoparticles and Nitrate Reductase A (NAR A) interaction in the treatment of infectious disease causing clinical strains of E. coli vol.13, pp.10, 2010, https://doi.org/10.1016/j.jiph.2020.08.004