DOI QR코드

DOI QR Code

A Kinetic Study on Aminolysis of 2-Pyridyl X-Substituted Benzoates: Effect of Changing Leaving Group from 4-Nitrophenolate to 2-Pyridinolate on Reactivity and Mechanism

  • Lee, Jong-Pal (Department of Chemistry, Dong-A University) ;
  • Bae, Ae-Ri (Department of Chemistry, Dong-A University) ;
  • Im, Li-Ra (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Um, Ik-Hwan (Department of Chemistry and Nano Science, Ewha Womans University)
  • Received : 2010.09.08
  • Accepted : 2010.09.28
  • Published : 2010.12.20

Abstract

Second-order rate constants ($k_N$) have been measured spectrophotometrically for nucleophilic substitution reactions of 2-pyridyl X-substituted benzoates 8a-e with a series of alicyclic secondary amines in $H_2O$ at $25.0{\pm}0.1^{\circ}C$. The $k_N$ values for the reactions of 8a-e are slightly smaller than the corresponding reactions of 4-nitrophenyl X-substituted benzoates 1a-e (e.g., $kN^{1a-e}/k_N^{8a-e}$ = 1.1 ~ 3.1), although 2-pyridinolate in 8a-e is ca. 4.5 $pK_a$ units more basic than 4-nitrophenolate in 1a-e. The Br$\o$nsted-type plot for the aminolysis of 8c (X = H) is linear with $\beta_{nuc}$ = 0.77 and $R^2$ = 0.991 (Figure 1), which is typical for reactions reported previously to proceed through a stepwise mechanism with breakdown of a zwitterionic tetrahedral intermediate $T^{\pm}$ being the rate-determining step (RDS), e.g., aminolysis of 4-nitrophenyl benzoate 1c. The Hammett plot for the reactions of 8a-e with piperidine consists of two intersecting straight lines (Figure 2), i.e., $\rho$ = 1.71 for substrates possessing an electron-donating group (EDG) while $\rho$ = 0.86 for those bearing an electron-withdrawing group (EWG). Traditionally, such a nonlinear Hammett plot has been interpreted as a change in RDS upon changing substituent X in the benzoyl moiety. However, it has been proposed that the nonlinear Hammett is not due to a change in RDS since the corresponding Yukawa-Tsuno plot exhibits excellent linear correlation with $\rho$ = 0.85 and r = 0.62 ($R^2$ = 0.995, Figure 3). Stabilization of substrates 8a-e in the ground state has been concluded to be responsible for the nonlinear Hammett plot.

Keywords

References

  1. Jencks, W. P. Chem. Rev. 1985, 85, 511-527. https://doi.org/10.1021/cr00070a001
  2. Castro, E. A. Chem. Rev. 1999, 99, 3505-3524. https://doi.org/10.1021/cr990001d
  3. Page, M. I.; Williams, A. Organic and Bio-organic Mechanisms; Longman, Singapore, 1997; Chapter 7.
  4. Castro, E. A.; Aliaga, M.; Santos, J. G. J. Org. Chem. 2005, 70, 2679-2685. https://doi.org/10.1021/jo047742l
  5. Castro, E. A.; Gazitua, M.; Santos, J. G. J. Org. Chem. 2005, 70, 8088-8092. https://doi.org/10.1021/jo051168b
  6. Castro, E. A.; Aliaga, M.; Santos, J. G. J. Org. Chem. 2004, 69, 6711-6714. https://doi.org/10.1021/jo048935b
  7. Castro, E. A.; Cubillos, M.; Santos, J. G. J. Org. Chem. 2004, 69, 4802-4807. https://doi.org/10.1021/jo049559y
  8. Castro, E. A.; Cubillos, M.; Aliaga, M.; Evangelisti, S.; Santos, J. G. J. Org. Chem. 2004, 69, 2411-2416. https://doi.org/10.1021/jo035451r
  9. Castro, E. A.; Acuna, M.; Soto, C.; Trujillo, C.; Vasquez, B.; Santos, G. J. Phys. Org. Chem. 2008, 21, 816-822. https://doi.org/10.1002/poc.1399
  10. Galabov, B.; Ilieva, S.; Hadjieva, B.; Atanasov, Y.; Schaefer III, H. F. J. Phys. Chem. A 2008, 112, 6700-6707. https://doi.org/10.1021/jp8007514
  11. Oh, H. K.; Oh, J. Y.; Sung, D. D.; Lee, I. J. Org. Chem. 2005, 70, 5624-5629. https://doi.org/10.1021/jo050606b
  12. Lee, I.; Sung, D. D. Curr. Org. Chem. 2004, 8, 557-567. https://doi.org/10.2174/1385272043370753
  13. Oh, H. K.; Park, J. E.; Sung, D. D.; Lee, I. J. Org. Chem. 2004, 69, 9285-9288. https://doi.org/10.1021/jo0484676
  14. Oh, H. K.; Ha, J. S.; Sung, D. D.; Lee, I. J. Org. Chem. 2004, 69, 8219-8223. https://doi.org/10.1021/jo0487247
  15. Oh, H. K.; Park, J. E.; Sung, D. D.; Lee, I. J. Org. Chem. 2004, 69, 3150-3153. https://doi.org/10.1021/jo049845+
  16. Menger, F. M.; Smith, J. H. J. Am. Chem. Soc. 1972, 94, 3824-3829. https://doi.org/10.1021/ja00766a027
  17. Maude, A. B.; Williams, A. J. Chem. Soc., Perkin Trans. 2 1997, 179-183.
  18. Um, I. H.; Im, L. R.; Kim, E. H.; Shin, J. H. Org. Biomol. Chem. 2010, 8, 3801-3806. https://doi.org/10.1039/c0ob00031k
  19. Um, I. H.; Lee, J. Y.; Ko, S. H.; Bae, S. K. J. Org. Chem. 2006, 71, 5800-5803. https://doi.org/10.1021/jo0606958
  20. Um, I. H.; Kim, K. H.; Park, H. R.; Fujio, M. Tsuno, Y. J. Org. Chem. 2004, 69, 3937-3942. https://doi.org/10.1021/jo049694a
  21. Um, I. H.; Min, J. S.; Ahn, J. A.; Hahn, H. J. J. Org. Chem. 2000, 65, 5659-5663. https://doi.org/10.1021/jo000482x
  22. Um, I. H.; Min, J. S.; Lee, H. W. Can. J. Chem. 1999, 77, 659-666. https://doi.org/10.1139/cjc-77-5-6-659
  23. Um, I. H.; Yoon, S.; Park, H. R.; Han, H. J. Org. Biomol. Chem. 2008, 6, 1618-1624. https://doi.org/10.1039/b801422a
  24. Um, I. H.; Hwang, S. J.; Yoon, S.; Jeon, S. E.; Bae, S. K. J. Org. Chem. 2008, 73, 7671-7677. https://doi.org/10.1021/jo801539w
  25. Um, I. H.; Hwang, S. J.; Baek, M. H.; Park, E. J. J. Org. Chem. 2006, 71, 9191-9197. https://doi.org/10.1021/jo061682x
  26. Um, I. H.; Kim, E. Y.; Park, H. R.; Jeon, S. E. J. Org. Chem. 2006, 71, 2302-2306. https://doi.org/10.1021/jo052417z
  27. Um, I. H.; Han, H. J.; Back, M. H.; Bae. S. Y. J. Org. Chem. 2004, 69, 6365-6370. https://doi.org/10.1021/jo0492160
  28. Um, I. H.; Lee, S. E.; Kwon, H. J. J. Org. Chem. 2002, 67, 8999-9005. https://doi.org/10.1021/jo0259360
  29. Um, I. H.; Hong, J. Y.; Seok, J. A. J. Org. Chem. 2005, 70, 1438-1444. https://doi.org/10.1021/jo048227q
  30. Um, I. H.; Chun, S. M.; Chae, O. M.; Fujio, M.; Tsuno, Y. J. Org. Chem. 2004, 69, 3166-3172. https://doi.org/10.1021/jo049812u
  31. Um, I. H.; Hong, J. Y.; Kim, J. J.; Chae, O. M., Bae, S. K. J. Org. Chem. 2003, 68, 5180-5185. https://doi.org/10.1021/jo034190i
  32. Um, I. H.; Han, J. Y.; Shin, Y. H. J. Org. Chem. 2009, 74, 3073-3078. https://doi.org/10.1021/jo900219t
  33. Um, I. H.; Akhtar, K.; Shin, Y. H.; Han, J. Y. J. Org. Chem. 2007, 72, 3823-3829. https://doi.org/10.1021/jo070171n
  34. Um, I. H.; Shin, Y. H.; Han, J. Y.; Mishima, M. J. Org. Chem. 2006, 71, 7715-7720. https://doi.org/10.1021/jo061308x
  35. Castro, E. A.; Cubillos, M.; Santos, J. G.. J. Org. Chem. 1997, 61, 3501-3505. https://doi.org/10.1021/jo951726u
  36. Castro, E. A.; Cubillos, M.; Santos, J. G.; Tellez, J. J. Org. Chem. 1997, 62, 2512-2517. https://doi.org/10.1021/jo961921o
  37. Castro, E. A.; Santos, J. G.; Tellez, J.; Umana, M. I. J. Org. Chem. 1997, 62, 6568- 6574. https://doi.org/10.1021/jo970624w
  38. Castro, E. A.; Saavedra, C.; Santos, J. G.; Umana, M. I. J. Org. Chem. 1999, 64, 5401-5407. https://doi.org/10.1021/jo990084y
  39. Hoque, M. E.; Guha, A. K.; Kim, C. K.; Lee, B.; Lee, H. W. Org. Biomol. Chem. 2009, 7, 2919-2925. https://doi.org/10.1039/b903148k
  40. Dey, N. K.; Hoque, M. E.; Kim, C. K.; Lee, B.; Lee, H. W. J. Phys. Org. Chem. 2009, 22, 425-430. https://doi.org/10.1002/poc.1478
  41. Lee, J. P.; Lee. H. W.; Okuyama, T.; Koo, I. S. Bull. Korean Chem. Soc. 2009, 30, 1893-1894. https://doi.org/10.5012/bkcs.2009.30.8.1893
  42. Dey, N. K.; Kim, C. K.; Lee, H. W. Bull. Korean Chem. Soc. 2009, 30, 975-978. https://doi.org/10.5012/bkcs.2009.30.4.975
  43. Lumbiny, B. J.; Lee, H. W. Bull. Korean Chem. Soc. 2008, 29, 2065-2068. https://doi.org/10.5012/bkcs.2008.29.10.2065
  44. Lumbiny, B. J.; Adhikar, K. K.; Lee, B. S.; Lee, H. W. Bull. Korean Chem. Soc. 2008, 29, 1769-1773. https://doi.org/10.5012/bkcs.2008.29.9.1769
  45. Adhikary, K. K.; Lumbiny, B. J.; Kim, C. K.; Lee, H. W. Bull. Korean Chem. Soc. 2008, 29, 851-855. https://doi.org/10.5012/bkcs.2008.29.4.851
  46. Oh, H. K.; Lee, J. M.; Lee, H. W.; Lee, I. C. Int. J. Chem. Kinet. 2004, 36, 434-440. https://doi.org/10.1002/kin.20000
  47. Oh, H. K.; Kim, I. K.; Lee, H. W.; Lee, I. C. J. Org. Chem. 2004, 69, 3806-3810. https://doi.org/10.1021/jo034370s
  48. Cook, R. D.; Daouk, W. A.; Hajj, A. N.; Kabbani, A.; Kurku, A.; Samaha, M.; Shayban, F.; Tanielian, O. V. Can. J. Chem. 1986, 64, 213-219. https://doi.org/10.1139/v86-037
  49. Guha, A. K.; Lee, H. W.; Lee, I. J. Org. Chem. 2000, 65, 12-15. https://doi.org/10.1021/jo990671j
  50. Hoque, M. E. U.; Dey, S.; Guha, A. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. J. Org. Chem. 2007, 72, 5493-5499. https://doi.org/10.1021/jo0700934
  51. Hoque, M. E. U.; Dey, N. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. Org. Biomol. Chem. 2007, 5, 3944-3950. https://doi.org/10.1039/b713167d
  52. Dey, N. K.; Hoque, M. E. U.; Kim, C. K.; Lee, B. S.; Lee, H. W. J. Phys. Org. Chem. 2008, 21, 544-548. https://doi.org/10.1002/poc.1314
  53. Um, I. H.; Han, J. Y.; Hwang, S. J. Chem. Eur. J. 2008, 14, 7324-7330. https://doi.org/10.1002/chem.200800553
  54. Um, I. H.; Park, J. E.; Shin, Y. H. Org. Biomol. Chem. 2007, 5, 3539-3543. https://doi.org/10.1039/b712427a
  55. Lee, J. I. Bull. Korean Chem. Soc. 2010, 31, 749-752. https://doi.org/10.5012/bkcs.2010.31.03.749
  56. Lee, J. I. Bull. Korean Chem. Soc. 2007, 28, 863-866. https://doi.org/10.5012/bkcs.2007.28.5.863
  57. Kim, Sunggak.; Lee, J. I. J. Org. Chem. 1984, 49, 1712-1716. https://doi.org/10.1021/jo00184a009
  58. Kim, Sunggak.; Lee, J. I.; Ko, Y. K. Tetrahedron Lett. 1984, 25, 4943-4946. https://doi.org/10.1016/S0040-4039(01)91265-1
  59. Kim, Sunggak.; Lee, J. I. J. Org. Chem. 1983, 48, 2608-1716. https://doi.org/10.1021/jo00163a040
  60. Mukaiyama, T.; Araki, M.; Takei, H. J. Amer. Chem. Soc. 1973, 95, 4763-4765. https://doi.org/10.1021/ja00795a055
  61. Araki, M.; Sakata, S.; Takei, H.; Mukaiyama, T. Bull. Chem. Soc. Jpn. 1974, 47, 1777-1780. https://doi.org/10.1246/bcsj.47.1777
  62. Um, I. H.; Lee, J. I.; Kang, J. S.; Kim, S. I. Bull. Korean Chem. Soc. 2010, 31, 2929-2933. https://doi.org/10.5012/bkcs.2010.31.10.2929
  63. Jencks, W. P.; Regenstein, F. In Handbook of Biochemistry, Selected Data for Molecular Biology; Sober, H. A., Ed.; The Chemical Rubber Co.: Cleveland, OH, 1968.
  64. Gresser, M. J.; Jencks, W. P. J. Am. Chem. Soc. 1977, 99, 6970-6980. https://doi.org/10.1021/ja00463a033
  65. Castro, E. A.; Santander, C. L. J. Org. Chem. 1985, 50, 3595-3600. https://doi.org/10.1021/jo00219a029
  66. Castro, E. A.; Valdivia, J. L. J. Org. Chem. 1986, 51, 1668-1672. https://doi.org/10.1021/jo00360a007
  67. Castro, E. A.; Steinfort, G. B. J. Chem. Soc., Perkin Trans. 2 1983, 453-457.
  68. Castro, E. A.; Aguayo, R.; Bessolo, J.; Santos, J. G. J. Org. Chem. 2005, 70, 7788-7791. https://doi.org/10.1021/jo051052f
  69. Castro, E. A.; Aguayo, R.; Bessolo, J.; Santos, J. G. J. Org. Chem. 2005, 70, 3530-3536. https://doi.org/10.1021/jo050119w
  70. Castro, E. A.; Vivanco, M.; Aguayo, R.; Santos, J. G. J. Org. Chem. 2004, 69, 5399-5404. https://doi.org/10.1021/jo049260f
  71. Castro, E. A.; Aguayo, R.; Santos, J. G. J. Org. Chem. 2003, 68, 8157-8161. https://doi.org/10.1021/jo0348120
  72. Oh, H. K.; Ku, M. H.; Lee, H. W.; Lee, I. J. Org. Chem. 2002, 67, 8995-8998. https://doi.org/10.1021/jo0264269
  73. Oh, H. K.; Ku, M. H.; Lee, H. W.; Lee, I. J. Org. Chem. 2002, 67, 3874-3877. https://doi.org/10.1021/jo025637a
  74. Oh, H. K.; Kim, S. K.; Lee, H. W.; Lee, I. New J. Chem. 2001, 25, 313-317. https://doi.org/10.1039/b006974o
  75. Oh, H. K.; Kim, S. K.; Cho, I. H.; Lee, H. W.; Lee, I. J. Chem. Sod., Perkin Trans. 2000, 2, 2306-2310.
  76. Lim, W. M.; Kim, W. K.; Jung, H. J.; Lee, I. Bull. Korean Chem. Soc. 1995, 16, 252-256.
  77. Jencks, W. P. Catalysis in Chemistry and Enzymology; McGraw-Hill: New York, 1969; pp 480-483.
  78. Tsuno, Y.; Fujio, M. Adv. Phys. Org. Chem. 1999, 32, 267-385. https://doi.org/10.1016/S0065-3160(08)60009-X
  79. Tsuno, Y.; Fujio, M. Chem. Soc. Rev. 1996, 25, 129-139. https://doi.org/10.1039/cs9962500129
  80. Yukawa, Y.; Tsuno, Y. Bull. Chem. Soc. Jpn. 1959, 32, 965-970. https://doi.org/10.1246/bcsj.32.965
  81. Than, S.; Maeda, H.; Irie, M.; Kikukawa, K.; Mishima, M. Int. J. Mass. Spec. 2007, 263, 205-214.
  82. Maeda, H.; Irie, M.; Than, S.; Kikukawa, K.; Mishima, M. Bull. Chem. Soc. Jpn, 2007, 80, 195-203. https://doi.org/10.1246/bcsj.80.195
  83. Mishima, M.; Maeda, H.; Than, S.; Irie, M.; Kikukawa, K. J. Phys. Org. Chem. 2006, 19, 616-623. https://doi.org/10.1002/poc.1104
  84. Fujio, M.; Alam, M. A.; Umezaki, Y.; Kikukawa, K.; Fujiyama, R.; Tsuno, Y. Bull. Chem. Soc. Jpn. 2007, 80, 2378-2383. https://doi.org/10.1246/bcsj.80.2378
  85. Fujio, M.; Umezaki, Y.; Alam, M. A.; Kikukawa, K.; Fujiyama, R.; Tsuno, Y. Bull. Chem. Soc. Jpn. 2006, 79, 1091-1099. https://doi.org/10.1246/bcsj.79.1091

Cited by

  1. Kinetics and Reaction Mechanism of Aminolyses of Benzyl 2-Pyridyl Carbonate and t-Butyl 2-Pyridyl Carbonate: Effect of Nonleaving Group on Reactivity and Reaction Mechanism vol.33, pp.5, 2012, https://doi.org/10.5012/bkcs.2012.33.5.1551
  2. Kinetic Study on Aminolysis of 4-Pyridyl X-Substituted Benzoates: Effect of Substituent X on Reactivity and Reaction Mechanism vol.32, pp.6, 2010, https://doi.org/10.5012/bkcs.2011.32.6.1907