Re-examination of the π -Bond Energies in Doubly-Bonded Species: A Theoretical Study

Jun-Xian Chen, Chang Kon Kim, and Chan Kyung Kim*

Department of Chemistry, Inha University, Incheon 402-751, Korea. *E-mail: kckyung@inha.ac.kr Received October 24, 2009, Accepted November 19, 2009

Key Words: π-Bond energies, Divalent state stabilization energy, Isogyric correction

In the extensive studies of silicon chemistry, Walsh¹ has observed that the first bond dissociation energy in SiX₄ species is always lower than the second bond dissociation energy in •SiX₃ species. The difference between the first and the second bond dissociation energies has been defined as the divalent state stabilization energy (DSSE). In the early 1990's, Grev and coworkers² have reported that the DSSE can be utilized to rationalize the relationships between a double-bond dissociation energy and a π -bond (and a σ -bond) energy for a double-bonded species consisting of the Group 14 elements such as germasilene (H₂Ge=SiH₂) and disilene (H₂Si=SiH₂). These relationships have been summarized in eq. 1. The original D'_{σ} term, $D'_{\sigma}(orig)$, suggested by Grev was shown in eq. 2.²⁶ However, by assuming that $D(H_3M-H) \approx D(H-H_2MM'H_3)$ and $D(H_3M'-H) \approx D(H_3)$ MM'H₂-H), the $D'_{\sigma}(orig)$ term was simplified to eq. B2. In eq. B2, DSSE terms have been estimated from the first and second bond dissociation energies of the corresponding hydrides, DSSE $(H_2M) = D(H_3M-H) - D(H_2M-H)$ and $DSSE(H_2M') = D(H_3M')$ -H) – D (H₂M²–H), which certainly introduced errors of less than 10 kcal mol^{1,2b} For H₂Ge=SiH₂ and H₂Ge=GeH₂, however, the $D_{M=M'}$ values estimated by use of eq. 1 are well agreed with those reported earlier. This indicates that the π -bond energy, D_{π} , could be reasonably estimated for a double bond system, if the reliable $D_{X=Y}$, D_{σ} and DSSE values are available.

values were in the range of $65 \sim 67$ kcal mol⁻¹.⁶ The differences of $2 \sim 5$ kcal mol⁻¹ could be roughly acceptable, but somewhat large for a more accurate prediction.

Anyway, the procedure of eq. 1 seems to be conceptually reasonable and applicable for all kinds of doubly-bonded species. If so, the deviation of the D_{π} value estimated by using eq. 1 for $CH_2 = CH_2$ could be caused from the approximations mentioned above. Therefore, in this work, the D_{π} values obtained by using the $D'_{\sigma}(orig)$ term have been compared to the D'_{σ} term for double-bonded species consisting of the Group 14 elements.

Calculations

It has been known that the QCISD(T) method⁷ well reproduces the results obtained by using the full configuration interaction (FCI) method, particularly for near equilibrium geometries.⁸ Therefore, in this work, geometry optimizations and frequency calculations have been carried out at the QCISD(T) level of theory with 6-311++G(3df, 2p) in order to acquire accurate results comparable to an accuracy of the G2 theory.⁹ However, even if the theoretical level employed is a highly sophisticated, there are still residual inaccuracies. To correct these inaccuracies, the concept of 'isogyric comparison'¹⁰ using the dissociation of H₂ has been utilized: The calculated electronic energy

$$H_{2}M \xrightarrow{\hspace{0.5cm}} M'H_{2} \xrightarrow{\hspace{0.5cm}} H_{2}M'H_{2} \xrightarrow{\hspace{0.5cm}} D_{\pi} \qquad (B1)$$

$$H_{2}M \xrightarrow{\hspace{0.5cm}} M'H_{2} \xrightarrow{\hspace{0.5cm}} H_{2}M^{\bullet} + ^{\bullet}M'H_{2} \xrightarrow{\hspace{0.5cm}} D_{\sigma} = D_{\sigma} - DSSE(MH_{2}) - DSSE(M'H_{2}) \qquad (B2)$$

$$H_{2}M \xrightarrow{\hspace{0.5cm}} M'H_{2} \xrightarrow{\hspace{0.5cm}} H_{2}M^{\bullet} + ^{\bullet}M'H_{2} \xrightarrow{\hspace{0.5cm}} D_{M=M'} \qquad (B3)$$

$$D_{M=M'} = D_{\pi} + D_{\sigma} - DSSE(MH_{2}) - DSSE(M'H_{2}) \qquad (1)$$

$$D'_{\sigma}(orig) = D(H_3M-M'H_3) - DSSE(H_2M) - DSSE(H_2M') + D(H_3M-H) - D(H-H_2MM'H_3) + D(H_3M'-H) - D(H_3MM'H_2-H)$$
(2)

However, the D_{π} value estimated by using eq. 1 for CH₂=CH₂ was deviated from the generally accepted ones, although the carbon also belongs to the Group 14 element: Experimental estimates of $D_{X=Y}$ and D_{σ} are 171 and 88 kcal mol⁻¹ for CH₂=CH₂ and CH₃-CH₃, respectively,^{3,4} and the DSSE(CH₂) derived by Grev from using the Pople's previous theoretical results⁵ was -6.6 kcal mol⁻¹. So that the D_{π} value estimated by use of eq. 1 was 69.8 kcal mol⁻¹ for CH₂=CH₂, but the generally accepted D_{π} of H atom at this level of theory, E(H) = -0.49982 hartree, was corrected to give the exact value of -0.5 hartree. So that the correction of -0.18 millihartree was added to each bound unpaired valence electron of H atom. Moreover the dissociation energy of H₂ was 1.17086 hartree at the QCISD(T)/6-311++G(3df, 2p) level, but the exact value was known to be 1.17446 hartree. Therefore, in this work, total isogyric correction, E_{ic} (in millihartree), could be calculated using eq. 3, where n_{α} and n_{β} are the number of α and β valence electrons, respectively. For example, in a homolytic bond dissociation reaction, the number of unpaired electrons is not conserved, and thus the differences in the number of α and β valence electrons between the reactants and dissociated products are 1 and -1, respectively. As a result, ΔE_{ic} = 2.03 kcal mol⁻¹ has been used for the processes including the homolytic bond dissociations. All the calculations have been performed by using the Gaussian 03 program.¹¹

$$E_{ic} = -0.18n_{\alpha} - 3.42n_{\beta}$$
(3)

Results and Discussion

To confirm the validity of the approximation, $D(H_3M-H) \approx$ $D(H-H_2MM'H_3)$, dissociation energies for the group 14 elements were calculated at the QCISD(T)/6-311++(3df, 2p) level, and the results are collected in Table 1. Table 1 showed that the differences between $D(H_3M-H)$ and $D(H-H_2MM'H_3)$, $\delta D =$ $D(H_3M-H) - D(H-H_2MM'H_3)$, were smaller than 10 kcal mol⁻¹ as suggested by Grev.^{2b} This indicates that the approximation of $D(H_3M-H) \approx D(H-H_2MM'H_3)$ could be useful in general purposes such as to predict a tendency of bond strength. However, in determining the D_{π} value by use of eq. 1 the relatively large errors could be introduced from these approximations, because the errors were the sum of the two approximations. For example, difference between $D(H_3Ge-H)$ and $D(H-H_2GeGeH_3)$ was only 2.2 kcal mol⁻¹ and this could be generally acceptable for the approximation of $D(H_3Ge-H) \approx D(H-H_2GeGeH_3)$. However this error was doubled in estimating the D_{π} value by use of eq. 1. As a result, the error of 4.4 kcal mol⁻¹ seems to be larger for an accurate work.

The $D'_{\sigma}(orig)$ term could be simplified as eq. 4, since the $D(H_3M-H)$ and $D(H_3M'-H)$ were also included in the definition of DSSE(H₂M) and DSSE(H₂M'), respectively, as noted above. In eq. 4, the two terms in square brackets corresponded to the energy differences between the first bond dissociation of a hydrogen in H₃MM'H₃ and the second bond dissociation in the corresponding hydride, H₃M• or •M'H₃. These were somewhat different from the DSSE defined by Walsh in determining the first bond dissociation energy, i.e., the DSSE in eq. 1 has been estimated both from the first and the second bond dissociation energies of the corresponding hydrides, DSSE(H₂M) = $D(H_3M-H) - D(•MH_2-H)$ or DSSE(H₂M') = $D(H_3M'-H) - D(•M'H_2$ -H). Therefore, in this work, the two terms in square brackets were denoted as DSSE' as shown in eqs. 5 and 6, and thus eq. 4 could be rewritten as eq. 7, which is similar to eq. B2.

$$D_{\sigma}^{\prime}(orig) = D(H_{3}M-M'H_{3}) - [D(H-H_{2}MM'H_{3}) - D(H-MH_{2})] - [D(H_{3}MM'H_{2}-H) - D(H_{2}M'-H)]$$
(4)

DSSE'(MH₂) = $D(H-H_2MM'H_3) - D(\bullet MH_2-H)$ (5)

DSSE'(M'H₂) = $D(H_3MM'H_2-H) - D(\bullet M'H_2-H)$ (6)

$$D'_{\sigma}(orig) = D_{\sigma} - DSSE'(MH_2) - DSSE'(M'H_2)$$
(7)

Table 1. The bond dissociation energies (kcal mol⁻¹), $D(H_3M-H)$ and $D(H-H_2MM^2H_3)$, calculated at QCISD(T)/6-311++G(3df,2p) level of theory. Values were obtained from zero-point corrected energies and isogyric corrections.

MH_4	<i>D</i> (H ₃ M–H)	$H_3MM'H_3$	$D(H-H_2MM'H_3)$	H ₃) δD^a	
CH ₄	103.0	H ₃ CCH ₃	99.4	3.6	
		H ₃ CSiH ₃	99.8	3.2	
		H ₃ CGeH ₃	100.8	2.2	
SiH4	89.9	H ₃ SiCH ₃	90.9	-1.0	
		H ₃ SiSiH ₃	87.2	2.7	
		H ₃ SiGeH ₃	87.5	2.4	
GeH ₄	83.4	H ₃ GeCH ₃	84.0	-0.6	
		H ₃ GeSiH ₃	80.9	2.5	
		H ₃ GeGeH ₃	81.2	2.2	

 ${}^{a}\delta D = D(H_{3}M-H) - D(H-H_{2}MM'H_{3})$

Table 2. The DSSE, DSSE' and D_{π} values (kcal mol⁻¹) calculated at QCISD(T)/6-311++G(3df, 2p) level of theory. Values were obtained by zero-point corrected energies and isogyric corrections.

	DSSE		DSSE'		D_{π}		
MH ₂ =M'H ₂	MH ₂	M'H ₂	MH ₂	M'H ₂	DSSE corr.	DSSE' corr.	literatures
GeH ₂ =CH ₂	26.2	-5.6	26.8	-7.8	35.8	34.2	31 ^{<i>a</i>}
GeH ₂ =GeH ₂	26.2	26.2	24.0	24.0	28.8	24.4	25^a
GeH ₂ =SiH ₂	26.2	23.7	23.7	21.3	29.8	24.9	25^a
SiH ₂ =SiH ₂	23.7	23.7	21.0	21.0	31.1	25.8	$25,^{a} 25.6^{b}$
SiH ₂ =CH ₂	23.7	-5.6	24.7	-8.8	40.7	38.5	35.6, ^c 39.5 ^b
CH ₂ =CH ₂	-5.6	-5.6	-9.2	-9.2	72.8	65.6	65.4, ^{<i>c</i>} 66.8 ^{<i>b</i>}

^aAvakyan, V. G.; Guselnikov, S. L.; Gusel'nikov, L. E. J. Organometallic Chem. **2003**, 686, 257. ^bRef. (6a). ^cRef. (6b).

In order to compare the differences in D_{π} values estimated by using the DSSE and the DSSE' corrections, the D_{π} values for the doubly-bonded species consisting of group 14 elements were estimated theoretically at the QCISD(T)/6-311++G(3df,2p)level, since most of experimental $D_{M=M}$ and D_{σ} values were unavailable in literature. Nevertheless, the calculated results could expect to be quite reliable, because the calculated $D_{C=C}$ $(171.7 \text{ kcal mol}^{-1})$ for CH₂ = CH₂ and D_{σ} (87.7 kcal mol⁻¹) for CH₃-CH₃ were agreed well with the experimental ones ($D_{C=C} = 171$ and $D_{\sigma} = 88$ kcal mol⁻¹).^{3,4} The estimated D_{π} values are summarized in Table 2. Examination of Table 2 showed that the D_{π} values obtained by using the DSSE' corrections were very close to the corresponding literature values, but those estimated by using the DSSE corrections showed relatively large errors. For example, the D_{π} values for GeH₂ = GeH₂ were estimated to be 28.8 and 24.4 kcal mol⁻¹ by the DSSE and DSSE' corrections, respectively, but the convincing literature value was 25.0 kcal mol⁻¹. Especially, the difference in the D_{π} value for CH₂ = CH₂ by the DSSE corrections was in the range of $6 \sim 7 \text{ kcal mol}^{-1}$ but was reduced considerably by the DSSE' corrections. This clearly indicates that the DSSE' corrections could be more accurate

for estimating the D_{π} values, even though the DSSE corrections were also reasonable in some cases. Since the DSSE' corrections for various doubly-bonded species have not been reported, systematic studies are in progress in our lab.

Conclusions

The aim of this study was to examine a reliable methodology to estimate the D_{π} values for doubly-bonded species. Although the approximate procedure suggested by Grev and coworkers seems to be conceptually reasonable and applicable to all kinds of doubly-bonded species, the D_{π} value estimated by using eq. 1 were largely deviated from the convincing literature values in some cases. In this work, the D_{π} values estimated from the DSSE and DSSE' corrections have been examined and compared with literature values. To achieve a higher accuracy, the D_{π} values were estimated at QCISD(T)/6-311++G(3df, 2p) level of theory combined with isogyric correction. Our results showed that the DSSE' corrections in eq. 7 are more reliable and adequate in estimating the D_{π} values in doubly-bonded species.

Acknowledgments. This work was supported by INHA University Research Grant.

References

- Walsh, R. *The Chemistry of Organic Silicon Compounds*; Wiley: New York, 1989. (b) Walsh, R. *Acc. Chem. Res.* **1981**, *14*, 246. (c) Walsh, R. *J. Chem. Soc. Faraday Trans. I* **1983**, *79*, 2233. (d) Walsh, R. *Pure Appl. Chem.* **1987**, *59*, 69. (e) Walsh, R. *Organometallics* **1989**, *8*, 1973.
- (a) Grev, R. S.; Schaefer III, H. F.; Baines, K. J. Am. Chem. Soc. 1990, 112, 9458. (b) Grev, R. S. In Advances in Organometallic Chemistry; Stone, F., Gordon, A., Eds.; Academic Press: London, 1991; Vol. 33, p 125.

- 3. Wu, C. J.; Carter, E. A. J. Phys. Chem. 1991, 95, 8352.
- Benson, S. W. *Thermochemical Kinetics*; John Wiley and Sons: New York, 1976.
- Pople, J. A.; Luke, B. T.; Frisch, M. J.; Binkley, J. S. J. Phys. Chem. 1985, 89, 2198.
- 6. (a) Wiberg, K. B.; Nakaji, D. J. Am. Chem. Soc. 1993, 115, 10658.
 (b) Schmidt, M. W.; Truong, P. N.; Gordon, M. S. J. Am. Chem. Soc. 1987, 109, 5217.
- (a) Pople, J. A.; Head-Gordon, M.; Raghavachari, K. J. Chem. Phys. **1987**, 87, 5968. (b) Pople, J. A.; Head-Gordon, M.; Raghavachari, K. J. Chem. Phys. **1989**, 90, 4635. (c) Raghavachari, K.; Trucks, G. W. J. Chem. Phys. **1989**, 91, 1062. (d) Raghavachari, K.; Trucks, G. W. J. Chem. Phys. **1989**, 91, 2457. (e) Paldus, J.; Ciiek, J.; Jeziorski, B. J. Chem. Phys. **1989**, 90, 4356.
- Bartlett, R. J. In *Modern Electronic Structure Theory*, Yarkony, D. R., Ed.; World Scientific Publishing Co. Ltd.: Singapore, 1995; p 1047.
- Curtiss, L. A.; Raghavachari, K.; Trucks, G. W.; Pople, J. A. J. Chem. Phys. 1991, 94, 7221.
- (a) Pople, J. A.; Frisch, M. J.; Luke, B. T.; Binkley, J. S. Int. J. Quantum Chem. 1983, S17, 307. (b) Pople, J. A.; Luke, B. T.; Frisch, M. J.; Binkley, J. S. J. Phys. Chem. 1985, 89, 2198.
- 11. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision B03. Gaussian, Inc., Pittsburgh PA, 2003.