DOI QR코드

DOI QR Code

Modification of MUSCL Scheme for Application of Non-uniform Grid

비정형격자의 적용을 위한 MUSCL 기법의 수정

  • Kim, Byung-Hyun (Dept. of Civil Engineering, Kyungpook National University) ;
  • Han, Kun-Yeon (Dept. of Civil Engineering, Kyungpook National University)
  • 김병현 (경북대학교 공과대학 건축.토목공학부 BK21사업단) ;
  • 한건연 (경북대학교 공과대학 건축.토목공학부)
  • Published : 2010.01.31

Abstract

This paper presents a new and simple technique to perform MUSCL reconstruction for solving 2D shallow water equations. The modified MUSCL scheme uses weighted area ratio to apply non-uniform grid in stead of the previous method that equally distributed the difference of conservation variables to each interface. The suggested method can physically reconstruct conservation variables in case of uniform grid as well as non-uniform grid. In this study, Unsplit scheme applicable to unstructured grid is used and efficient slope limiter of TVD scheme is used to control numerical oscillation which can be occurred in modified MUSCL scheme. For accurate and efficient treatment of bed slope term, the modified MUSCL scheme is coupled with the surface gradient method. The finite volume model applied to suggested scheme is verified through a comparison between numerical solution and laboratory measurements data such as the simulations of isolated building test case and Bellos's dam break test case.

본 논문은 2차원 천수방정식을 해석하기 위해 새롭고 간단한 MUSCL 재구성법을 제안하였다. 수정 MUSCL 기법은 보존변수의 재구성을 위해 계산격자와 인접격자의 보존변수 차에 대해 각 경계면에 균일하게 분배하는 기존 방법 대신 면적가중비를 사용하였으며, 이 방법은 정형격자 뿐만 아니라 비정형 격자의 사용에도 보존변수의 물리적 재구성이 가능하다. 또한, 본 연구에서는 비구조적 격자의 적용이 가능한 차원비분리 기법을 적용하였으며, 수정 MUSCL 기법의 사용으로 발생할 수 있는 수치진동을 제어하기 위해 TVD 기법의 경사제한자를 사용하였다. 하상경사항의 정확하고 효율적인 수치 처리를 위해 수정 MUSCL 기법을 수면경사법과 연계하였다. 제안한 기법을 적용한 유한체적모형을 건물의 영향을 고려한 댐 붕괴 해석 및 Bellos의 댐 붕괴 실험에 적용하고, 적용결과를 실험실 자료 및 기존 연구자의 계산결과와 비교하여 개발모형을 검증하였다.

Keywords

References

  1. 김우구, 정관수, 김재한 (2003). “WAF 기법을 이용한 천수방정식 해석.” 한국수자원학회 논문집, 제36권, 제5호, pp. 777-785. https://doi.org/10.3741/JKWRA.2003.36.5.777
  2. 김지성 (2006). Riemann 해법을 이용한 하천수리해석 모형. 박사학위논문, 경북대학교, pp. 41-45.
  3. Alcrudo, F., Garcia-Navarro, P. (1993). “A High resolution Godunov-type Scheme in Finite Volumes for the 2D Shallow-water Equations.” International Journal for Numerical Methods in Fluids, Vol. 16, No. 6, pp. 489-505. https://doi.org/10.1002/fld.1650160604
  4. Aureli, F., Maranzoni, A., and Mignosa, P. (2008). “Dam-Break Flows: Acquisition of Experimental Data through an Imaging Technique and 2D Numerical Modeling.” Journal of Hydraulic Engineering, Vol. 134, No. 8, pp. 1089-1101. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:8(1089)
  5. Bellos, C.V., Soulis, J.V., and Sakkas, J.G. (1992). “Experimental Investigation of Two-Dimensional Dam-Break induced Flows.” Journal of Hydraulic Research, IAHR, Vol. 29, No. 5, pp. 1-17. https://doi.org/10.1080/00221689209498946
  6. Billet, G,, and Louedin, O. (2001). “Adaptive limiters for improving the accuracy of the MUSCL approach for unsteady flows.” Journal of Computational Physics, Vol. 170, pp. 161-183. https://doi.org/10.1006/jcph.2001.6731
  7. Caleffi, V., Valiani, A., and Zanni, A. (2003). “Finite Volume Method for Simulating Extreme Flood Events in Natural Channels.” Journal of Hydraulic Research, IAHR, Vol. 41, No. 2, pp. 167-177. https://doi.org/10.1080/00221680309499959
  8. Capart, H. (2003). “Dam-break flow past an oblique building on a square grid: rigid and erodible building simulations.” IMPACT Investigation of Extreme Flood Processes and Uncertainty, Proceedings 3rd Project Workshop, Louvain-la-Neuve, Belgium, November, 2003.
  9. Godunov, S.K. (1959). “A difference method for numerical calculation of discontinuous equations of hydrodynamics.” Matematicheski Sbornik, Vol. 47, No. 3, pp. 271-300.
  10. Colella, P, and Woodward, P.R. (1984). “The piecewise parabolic method (PPM) for gasdynamical simulations.” Journal of Computational Physics, Vol. 54, pp. 174-201. https://doi.org/10.1016/0021-9991(84)90143-8
  11. Fraccarollo, L., and Toro, E.F. (1995). “Experimental and Numerical Assessment of the Shallow Water Model for Two-dimensional Dam-Break Type Problems.” Journal of Hydraulic Research, IAHR, Vol. 33, No. 6, pp. 843-864. https://doi.org/10.1080/00221689509498555
  12. Guo, W.D., Lai, J.S., and Lin, G.F. (2007). “Hybrid flux-splitting Finite-volume schemes for shallowwater flow simulations with source terms.” Journal of Mechanics, Vol. 23, No. 4, pp. 399-414. https://doi.org/10.1017/S1727719100001453
  13. Hubbard, M.E. (1999). “Multidimensional slope limiters for MUSCL-type finite volume schenes on unstructured grid.” Journal of Computational Physics, Vol. 155, No. 1, pp. 54-74. https://doi.org/10.1006/jcph.1999.6329
  14. Lai, J.S., Lin, G.F., and Guo, W.D. (2005). “An Upstream-flux splitting finite-volume schemes for 2D shallow water equations.” International Journal for Numerical Methods in Fluids, Vol. 48, No. 10, pp. 1149-1174. https://doi.org/10.1002/fld.974
  15. Leveque, R.J. (2002). Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, Cambridge, UK.
  16. Noel, B., Soares-Frazao, S., and Zech, Y. (2003). “Computation of the 'isolated building test case' and the 'model city experiment' benchmarks.” IMPACT Investigation of Extreme Flood Processes and Uncertainty, Proceedings 3rd Project Workshop, Louvain-la-Neuve, Belgium, November, 2003.
  17. Petaccia, G., and Savi, F. (2003). “Two Dimensional simulation of a Dam Break wave propagation for the isolated building test case.” IMPACT Investigation of Extreme Flood Processes and Uncertainty, Proceedings 3rd Project Workshop, Louvain-la-Neuve, Belgium, November, 2003.
  18. Soares-Frazao, S., and Guinot, V. (2007). “An eigenvector-based linear reconstruction scheme for the shallow-water equation on two-dimensional unstructured mesh.” International Journal for Numerical Methods in Fluids, Vol. 53, No. 1, pp. 23-55. https://doi.org/10.1002/fld.1242
  19. Soares-Frazao, S., and Zech, Y. (2002) “Dam Break flow experiment: the isolated building test case.” IMPACT, 2nd Project Workshop, CD_ROM proceedings, Mo-I-Rana, Norway, September, 2002
  20. Toro, E.F. (1999). Riemann Solvers and Numerical Methods for Fluid Dynamics, 2nd Ed., Springer-Verlag, Berlin, Germany.
  21. Toro, E.F. (2001). Shock-Capturing Methods for Free-Surface Shallow Flows, John Wiley & Sons, Chichester, UK.
  22. Valiani, A., Caleffi, V., and Zanni, A. (2002). “Case Study: Malpasset Dam-Break Simulation using a Two-Dimensional Finite Volume Method.” Journal of Hydraulic Engineering, ASCE, Vol. 128, No. 5, pp. 460-472. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:5(460)
  23. Van Leer, B. (1977). “Toward the ultimate conservative difference scheme, IV: A new approach to numerical convection.” Journal of Computational Physics, Vol. 23, pp. 276-299. https://doi.org/10.1016/0021-9991(77)90095-X
  24. Van Leer, B. (1977). “Towards the ultimate conservative difference scheme IV. A new approach to numerical convection.” Journal of Computational Physics Vol. 32, pp. 101-136. https://doi.org/10.1016/0021-9991(79)90145-1
  25. Wei, Y., Mao, X., and Cheung, K.F. (2006). “Well-balanced finite-volume model for long-wave runup.” Journal of Waterway. Port, Coast. Ocean Eng. 132 (2) (2006), pp. 114–124. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus Vol. 13. https://doi.org/10.1061/(ASCE)0733-950X(2006)132:2(114)
  26. Zhou J. G., Causon, D.M., Ingram, D.M., and Mingham C.G. (2002), “Numerical solutions of the shallow water equations with discontinuous bed topography.” International Journal for Numerical Methods in Fluids, Vol. 38, No 8, pp. 769-788. https://doi.org/10.1002/fld.243
  27. Zhou, J.G., Causon, D.M., Mingham, C.G., and Ingram, D.M.(2004). “Numerical Prediction of Dam-Break Flows in General Geometries with Complex Bed Topography.” Journal of Hydraulic Engineering, ASCE, Vol. 130, No. 4, pp. 332-340. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:4(332)

Cited by

  1. A Study on Simulation of Dam-Break Wave Using a Three-Dimensional Numerical Model vol.12, pp.2, 2012, https://doi.org/10.9798/KOSHAM.2012.12.2.181
  2. An Application of the Multi-slope MUSCL to the Shallow Water Equations vol.44, pp.10, 2011, https://doi.org/10.3741/JKWRA.2011.44.10.819