DOI QR코드

DOI QR Code

Materials Chemical Point of View for Durability Issues in Solid Oxide Fuel Cells

  • Yokokawa, Harumi (Advanced Research Laboratories, Tokyo City University) ;
  • Horita, Teruhisa (National Institute of Advanced Industrial Science and Technology(AIST)) ;
  • Yamaji, Katsuhiko (National Institute of Advanced Industrial Science and Technology(AIST)) ;
  • Kishimoto, Haruo (National Institute of Advanced Industrial Science and Technology(AIST)) ;
  • Brito, M.E. (National Institute of Advanced Industrial Science and Technology(AIST))
  • Published : 2010.01.31

Abstract

Degradation in Solid Oxide Fuel Cell performance can be ascribed to the following fundamental processes from the materials chemical point of view; that is, diffusion in solids and reaction with gaseous impurities. For SOFC materials, diffusion in solids is usually slow in operation temperatures $800\sim1000^{\circ}C$. Even at $800^{\circ}C$, however, a few processes are rapid enough to lead to some degradations; namely, Sr diffusion in doped ceria, cation diffusion in cathode materials, diffusion related with metal corrosion, and sintering of nickel anodes. For gaseous impurities, chromium containing vapors are important to know how the chemical stability of cathode materials is related with degradation of performance. For LSM as the most stable cathode among the perovskite-type cathodes, electrochemical reduction reaction of $CrO_3$(g) at the electrochemically active sites is crucial, whereas the rest of the cathodes have the $SrCrO_4$ formation at the point where cathodes meet with the gases, leading to rather complicated processes to the degradations, depending on the amount and distribution of reacted Cr component. These features can be easily generalized to other impurities in air or to the reaction of nickel anodes with gaseous impurities in anode atmosphere.

Keywords

References

  1. H. Yokokawa and N. Sakai, “Part 4. Fuel Cell Principle, Systems and Applications, Chapter 13 History of High Temperature Fuel Cell Development,” pp 219-66, in Handbook of Fuel Cells Fundamentals Technology and Application, Vol. 1, Fundamentals and Survey of Systems, Ed. By W. Vielstich, A. Lamm and H. A. Gasteiger, John Wiley & Sons, 2003.
  2. S. C. Singhal, pp. 39-51, in Solid Oxide Fuel Cells VI, PV 99-19, Electrochemical Society, Pennington, NJ, 1999.
  3. H. Yokokawa, “Part 5 Performance and Degradations, Chapter 63 Overview of Solid Oxide Fuel Cell Degradation,” pp. 923-32 in Handbook of Fuel Cells Fundamentals Technology and Application, Vol. 6, Advances in Electrocatalyst, Materials, Diagnostics, and Durability, Ed. By W. Vielstich, H. Yokokawa and H. A. Gasteiger, John Wiley & Sons, 2009.
  4. H. Yokokawa, H. Tu, B. Iwanschitz, and A. Mai, “Fundamental Mechanism Limiting Solid Oxide Fuel Cell Durability,” J. Power Sources, 182 400-12 (2008). https://doi.org/10.1016/j.jpowsour.2008.02.016
  5. H. Yokokawa, “Understanding Materials Compatibility,” Annu. Rev. Mater. Res., 33 581-610 (2003). https://doi.org/10.1146/annurev.matsci.33.022802.093856
  6. H. Yokokawa, N. Sakai, T. Horita, and K. Yamaji, “Part 5 Performance and Degradations, Chapter 67 Impact of impurities on Materials Reliability in SOFC Stack/Modules,” pp. 979-91, in Handbook of Fuel Cells Fundamentals Technology and Application, Vol. 6. Advances in Electrocatalyst, Materials, Diagnostics, and Durability, Ed. By W. Vielstich, H. Yokokawa and H. A. Gasteiger, John Wiley & Sons, 2009.
  7. H. Yokokawa, T. Horita, N. Sakai, J. Yamaji, M. E. Brito, Y. P. Xiong, and H. Kishimoto, “Thermodynamic Considerations on Cr Poisoning in SOFC Cathodes,” Solid State Ionics, 177 c(2006). https://doi.org/10.1016/j.ssi.2006.07.055
  8. H. Yokokawa, H. Sakai, T. Horita, K. Yamaji, M. E. Brito, and H. Kishimoto, “Thermodynamic and Kinetic Considerations on Degradations in sOlid Oxide Fuel Cell Cathodes,” J. Alloy Comp., 452 41-7 (2008). https://doi.org/10.1016/j.jallcom.2006.12.150
  9. K. Yamaji, N. Sakai, H. Kishimoto, T. Horita, M. E. Brito, and H. Yokokawa, “Part 3 Materials for High Temperature Fuel Cells, Chapter 37 Application of SIMS Technique on Durability of SOFC Materials,” pp. 555-65, in Handbook of Fuel Cells Fundamentals Technology and Application, Vol. 5, Advances in Electrocatalyst, Materials, Diagnostics, and Durability, Ed. by W. Vielstich, H. Yokokawa and H. A. Gasteiger, John Wiley & Sons, 2009.
  10. T. Horita, H. Kishimoto, K. Yamaji, M. E. Brito, Y. P. Xiong, H. Yokokawa, Y. Hori, and I. Miyauchi, “Effects of Impurities on the Degradation and Long-term Stability for Solid Oxide Fuel Cells,” J. Power Sources, 193 194-98 (2009). https://doi.org/10.1016/j.jpowsour.2008.10.127
  11. H. Yokokawa, T. Horita, K. Yamaji, H. Kishimoto, Y. P. Xiong, and M. E. Brito, “Effect of Contamination on the Durability of SOFC Stacks and Modules in Real Operation Condition,” Proceedings of 8th European Solid Oxide Fuel Cell Forum, B1004 (2008).
  12. Thermodynamic database (CD version). MALT for Windows; http://www.kagaku.com/malt/index.html; see also H. Yokokawa, S. Yamauchi, and T. Matsumoto, CALPHAD 26 [2] 155-66 (2002). https://doi.org/10.1016/S0364-5916(02)00032-9
  13. H. Yokokawa, T. Kawada, and M. Dokiya, “Thermodynamic Regularities in Perovskites and $K_2NiF_4$ Compounds,” J. Am. Ceram. Soc., 72 152 (1989); H. Yokokawa, N. Sakai, T. Kawada, and M. Dokiya, “Chemical Potential Diagrams for Rare Earth-Transition Metal-Oxygen Systems: I. Ln-V-O and Ln-Mn-O Systems,” J. Am. Ceram. Soc., 73 649 (1990). https://doi.org/10.1111/j.1151-2916.1990.tb06567.x
  14. H. Yokokawa, N. Sakai, T. Kawada, and M. Dokiya, “Thermodynamic Stability of Perovskites and Related Compounds in Some Alkaline Earth - Transition Metal - Oxygen Systems,” J. Solid State Chem., 94 106 (1991). https://doi.org/10.1016/0022-4596(91)90225-7
  15. R. S. Gemmen and J. Trembly, “On the Mechanisms and Behavior of Coal Syngas Transport and Reaction within the Anode of a Solid Oxide Fuel Cell,” J. Power Sources, 161 1084-95 (2006). https://doi.org/10.1016/j.jpowsour.2006.06.012
  16. Fatma Nihan Cayan, Mingjia Zhi, Suryanarayana Raju Pakalapati, Ismail Celik, Nianqiang Wu, and Randall Gemmen, “Effects of Coal Syngas Impurities on Anodes of Solid Oxide Fuel Cells,” J. Power Sources, 185 595-602 (2008). https://doi.org/10.1016/j.jpowsour.2008.06.058
  17. Haruo Kishimoto, Katsuhiko Yamaji, M. E. Brito, Teruhisa Horita, and Harumi Yokokawa, “Generalized Ellingham Diagrams for Utilization in Solid Oxide Fuel Cells,” the Serbian international J. Mining and Metallurgy I, 44B 39-48 (2008).
  18. H. Yokokawa, H. Kishimoto, K. Yamaji, and T. Horita, “Generalization of Degradation Mechanisms in Terms of Materials Chemical Nature, Operation Condition and Electrode Reaction Mechanisms,” pp. 401-10, SOFC-XI, Ed. S.C. Singhal and H. Yokokawa, The Electrochem. Soc. Inc., 2009.
  19. T. Kawada, N. Sakai, H. Yokokawa, M. Dokiya, M. Mori, and T. Iwata, “Characteristics of Slurry Coated Nickel Zirconia Cermet Anodes for Solid Oxide Fuel Cell,” J. Electrochem. Soc., 137 3042 (1990). https://doi.org/10.1149/1.2086156
  20. H. Yokokawa and T. Horita, “Chapter 5 Cathode,” pp.119-47, in High Temperature Solid Oxide Fuel Cells Fundamentals, Design and Application, Ed. by S. C. Singhal and K. Kendall, Elsevier, 2003.
  21. N. Sakai, K. Yamaji, T. Horita, Y. P. Xiong, and H. Yokokawa, “Rare-Earth Materials for Solid Oxide Fuel Cells (SOFC),” pp. 1-43, in Handbook on the Physics and Chemistry of Rare Earths Vol. 35, Ed. by K. A. Gschneidner, Jr., J. –C. G. Bünzli and V. K. Pecharsky, 2005.
  22. H. Yokokawa, T. Horita, N. Sakai, K. Yamaji, M. E. Brito, Y. P. Xiong, and H. Kishimoto, “Ceria: Relation Among Thermodynamic, Electronic Hole and Proton Properties,” Solid State Ionics, 177 1705-14 (2006). https://doi.org/10.1016/j.ssi.2006.03.006
  23. Y. P. Xiong, K. Yamaji, T. Horita, H. Yokokawa, J. Akikusa, H. Eto, and T. Inagaki, “Sulfur Poisoning of SOFC Cathodes,” J. Electrochem. Soc., 156 [5] B588-92 (2009). https://doi.org/10.1149/1.3090169
  24. T. Komatsu, H. Arai, R. Chiba, K. Nozawa, M. Arakawa, and K. Sato, “Cr Poisoning Suppression in Solid Oxide Fuel Cells Using $LaFe(Ni)_3$ Electrodes,” Electrochem.Solid State Letters, 9 [1] A9-12 (2006). https://doi.org/10.1149/1.2130309
  25. H. Uchida, M. Yoshida, and M. Watanabe, “Effect of Ionic Conductivity of Zirconia Electrolytes on the Polarization Behavior of Various Cathodes in Solid Fuel Cells,” J. Electrochem. Soc., 146 [1] 1-7 (1999). https://doi.org/10.1149/1.1391555
  26. H. Yokokawa, T. Horita, N. Sakai, K. Yamaji, M. E. Brito, Y. P. Xiong, and H. Kishimoto, “Protons in Ceria and Their Roles in SOFC Electrode Reactions from Thermodynamic and SIMS Analyses,” Solid State Ionics, 174 205-21 (2004). https://doi.org/10.1016/j.ssi.2004.05.030
  27. T. Horita, K. Yamaji, T. Koto, N. Sakai, Y. P. Xiong, H. Kishimoto, M. E. Brito, and H. Yokokawa, “Imaging of $CH_4$ Decomposition Around Ni/YSZ Interfaces Under Anodic Polarization,” J. Power Source, 145 133-38 (2005). https://doi.org/10.1016/j.jpowsour.2004.12.075
  28. H. Yokokawa, K. Yamaji, T. Horita, Y.P. Xiong, N. Sakai, E. Ivers-Tiffee, A. Weber, A. Muller, D. Fouquet, K. Eguchi, T. Takeguchi, R. Kikuchi, T. Norby, and R. Haugsrud, “Study on an Efficient and Flexible System,” pp. 1200-09, in Solid Oxide Fuel Cells VIII, PV 2003-07, Ed. By S. C. Singhal and M. Dokiya, The Electrochemical Society, Inc., 2003.
  29. K. Sasaki, K. Susuki, A. Iyoshi, M. Uchimura, N. Imamura, H. Kusaba, Y. Teraoka, H. Fuchino, K. Tsujimoto, Y. Uchida, and N. Jingo, “H2S Poisoning of Solid Oxide Fuel Cells,” J. Electrochem. Soc., 153 [11] A2023-29 (2006). https://doi.org/10.1149/1.2336075

Cited by

  1. Degradation of SOFC Cell/Stack Performance in Relation to Materials Deterioration vol.49, pp.1, 2012, https://doi.org/10.4191/kcers.2012.49.1.011
  2. -Based Cathode within Generalized Approach vol.13, pp.4, 2013, https://doi.org/10.1002/fuce.201200164
  3. Towards Comprehensive Description of Stack Durability/Reliability Behavior vol.15, pp.5, 2015, https://doi.org/10.1002/fuce.201400182
  4. Recent Achievements of NEDO Durability Project with an Emphasis on Correlation Between Cathode Overpotential and Ohmic Loss vol.17, pp.4, 2017, https://doi.org/10.1002/fuce.201600186
  5. vol.166, pp.2, 2019, https://doi.org/10.1149/2.0351902jes