DOI QR코드

DOI QR Code

Theoretical and Experimental Studies on the Kinetics of Cation Redistribution Processes in Complex Oxides

  • Shi, Jianmin (Institute of Physical and Theoretical Chemistry, Technische Universitat Braunschweig) ;
  • Becker, Klaus-Dieter (Institute of Physical and Theoretical Chemistry, Technische Universitat Braunschweig)
  • Published : 2010.01.31

Abstract

The kinetics of cation reequilibration have been studied theoretically and experimentally in complex oxides after an external perturbation of equilibrium by temperature jumps. A general kinetic model for cation redistribution amongst non-equivalent sites in complex oxides is derived based on a local homogeneous point defect mechanism involving cation vacancies. Temperature-jump optical relaxation spectroscopy has been established to investigate cation kinetic processes in spinels and olivines. The kinetic model satisfactorily describes the experimental absorbance relaxation kinetics in cobalt containing olivines and in nickel containing spinels. It is found that the kinetics of cation redistribution in complex oxides shows a strong temperature- and composition-dependence. Activation energies for cation redistribution in Co-Mg olivines are found to range between 200 and 220 kJ/mol whereas an energy barrier of about 230 kJ/mol is observed in the case of nickel gallate spinel.

References

  1. S.-Y. Chung, J. T. Bloking, and Y.-M. Chiang, “Electronically Conductive Phospho-Olivines as Lithium Storage Electrodes,” Nat. Mat., 1 123-28 (2002). https://doi.org/10.1038/nmat732
  2. A. Nyten, A. Aboumrane, M. Armand, T. Gustafson, and J. O. Thomas, “Electrochemical Performance of $Li_2FeSiO_4$ as a New Li-Battery Cathode Material,” Electrochem. Commun., 7 156-60 (2005). https://doi.org/10.1016/j.elecom.2004.11.008
  3. R. Dominko, “$Li_2MSiO_4$(M = Fe and/or Mn) Cathode Materials,” J. Pow. Sources, 184 462-68 (2008). https://doi.org/10.1016/j.jpowsour.2008.02.089
  4. M. R. Bateni, P. Wei, X. Deng, and A. Petric, “Spinel Coatings for UNS 430 Stainless Steel Interconnects,” Surf. Coat. Tech., 201 4677-84 (2007). https://doi.org/10.1016/j.surfcoat.2006.10.011
  5. Y. Xia and M. Yoshio, “Optimization of Spinel $Li_{1+x}Mn_{2–y}O_4$ as a 4 V Li-Cell Cathode in Terms of a Li-Mn-O Phase Diagram,” J. Electrochem. Soc., 144 4186-94 (1997). https://doi.org/10.1149/1.1838164
  6. U. Lafont, C. Locti, and E. M. Kelder, “Nanopowders of Spinel-Type Electrode Materials for Li-Ion Batteries,” Solid State Ionics, 177 3023-29 (2006). https://doi.org/10.1016/j.ssi.2006.07.056
  7. H. Schmalzied, “Rontgenographische Untersuchung der Kationenverteilung in Spinellphasen,” Z. Phys. Chem. NF, 28 203-19 (1961). https://doi.org/10.1524/zpch.1961.28.3_4.203
  8. H. St. C. O'Neill and A. Navrotsky, “Cation Distributions and Thermodynamic Properties of Binary Spinel Solid Solutions,” Am. Mineral., 69 733-53 (1984).
  9. S. Ghose and C. Wan, “Strong Site Preference of $Co^{2+}^ in Olivine, Co_{1.10}Mg_{0.90}SiO_4$,” Contr. Mineral. Petrol., 47 131-40 (1974). https://doi.org/10.1007/BF00372114
  10. K. D. Becker and F. Rau, “High-temperature Ligand Field Spectra in Spinels: Cation Disorder and Cation Kinetics in $NiAl_2O_4$,” Ber. Bunsenges. Phys. Chem., 91 1279-82 (1987). https://doi.org/10.1002/bbpc.19870911139
  11. K. D. Becker and F. Rau, “High-Temperature Ligand Field Spectra and Cation Disorder and Dynamics in Spinels: $CoAl_2O_4$,” Solid State Ionics, 28-30 1290-93 (1988). https://doi.org/10.1016/0167-2738(88)90373-6
  12. H. St. C. O'Neill, W. A. Dollase and C. R. Ross, “Temperature Dependence of the Cation Distribution in Nickel Aluminate $(NiAl_2O_4)$ Spinel: a Powder XRD Study,” Phys. Chem. Miner., 18 302-19 (1991).
  13. K. Sujata and T. Mason, “Kinetics of Cation Redistribution in Ferrospinels,” J. Am. Ceram. Soc., 75 557-62 (1992). https://doi.org/10.1111/j.1151-2916.1992.tb07842.x
  14. K. D. Becker and J. Bäckermann, “Kinetics of Order-Disorder Processes in Spinels,” Phase Transitions, 55 181-97 (1995). https://doi.org/10.1080/01411599508200433
  15. S. A. T. Redfern, R. J. Harrison, H. St. C. O'Neill, and D. R. R. Wood, “Thermodynamics and Kinetics of Cation Ordering in $MgAl_2O_4$ Spinel up to $1600^{\circ}C$ from in Situ Neutron Diffraction,” Am. Mineral., 84 299-310 (1999). https://doi.org/10.2138/am-1999-0313
  16. J. Backermann and K. D. Becker, “The Mechanism of Cation Equilibration in Nickel Aluminate Spinel, $NiAl_2O_4$,” Z. Phys. Chem., 206 31-47 (1998). https://doi.org/10.1524/zpch.1998.206.Part_1_2.031
  17. K. Ullrich, S. Locmelis, M. Binnewies, and K. D. Becker, “An Optical Spectroscopy Study of Ionic Defects: $Ni^{2+}$ Ions in Tetrahedral Coordination,” Phase Transitions, 76 103-16 (2003). https://doi.org/10.1080/0141159031000076084
  18. R. P. Sutanto, W. Kockelmann, and A. Kirfel, “Time Resolved Equilibration of the Cation Distriution in Olivine Type $(Co_{0.5}1Mg_{0.49})_2SiO_4$,” p. 51 in Book of Abstracts, Annual Meeting DGK and DGKK, Oldenbourg-Verlag, Munchen, 2004.
  19. K. Ullrich, O. Ott, K. Langer, and K. D. Becker, “Temperature Dependence of the Polarized Electronic Absorption Spectra of Olivines. Part II - Cobalt-Containing Olivines,” Phys. Chem. Miner., 31 247-60 (2004). https://doi.org/10.1007/s00269-004-0393-z
  20. J. Shi and K. D. Becker, “Activation Energy of Co-Mg Intersite Exchange in Olivine, $(Co_{0.6}Mg_{0.4})_2SiO_4$,” Chem. Phys. Lett., 444 56-60 (2007). https://doi.org/10.1016/j.cplett.2007.06.117
  21. J. Shi, S.G. Ebbinghaus, and K. D. Becker, “Temperature-Jump Induced Cation Exchange Kinetics in $(Co_{0.1}Mg_{0.9})_2SiO_4$ Olivine: An in situ Optical Spectroscopic Study,” Phys. Chem. Miner., 35 1-9 (2008). https://doi.org/10.1007/s00269-007-0187-1
  22. M. Mutke, M. Kreye, J. Shi, and K. D. Becker, “Kinetics of Cation Distribution in Cobalt-Containing Olivine, $(Co_{0.6}Mg_{0.4})_2SiO_4$,” Phys. Chem. Chem. Phys., 10 3895-902 (2008). https://doi.org/10.1039/b718182e
  23. J. Shi, S. Ganschow, D. Klimm, K. Simon, R. Bertram, and K. D. Becker, “Octahedral Cation Exchange in $(Co_{0.21}Mg_{0.79})_2SiO_4$ Olivine at High Temperatures: Kinetics, Point Defect Chemistry, and Cation Diffusion,” J. Phys. Chem. C, 113 6267-74 (2009). https://doi.org/10.1021/jp810968q
  24. M. Miyake, H. Nakamura, H. Kojima, and F. Marumo, “Cation Ordering in Co-Mg Olivine Solid-solution Series,” Am. Mineral., 72 594-98 (1987).
  25. D. Boström, “Single Crystal X-ray Diffraction Studies of Synthetic (Co,Mg)-Olivine Solid Solutions,” Acta Chem. Scand., 43 121-27 (1989). https://doi.org/10.3891/acta.chem.scand.43-0121
  26. M. Müller-Sommer, R. Hock, and A. Kirfel, “Rietveld Refinement Study of the Cation Distribution in (Co,Mg)-Olivine Solid Solution,” Phys. Chem. Miner., 24 17-23 (1997) https://doi.org/10.1007/s002690050013
  27. M. N. Taran and G. R. Rossman, “Optical Spectra of $Co^{2+}$ in Three Synthetic Silicate Minerals,” Am. Mineral., 86 889-95 (2001). https://doi.org/10.2138/am-2001-0712
  28. J. Hermeling and H. Schmalzried, “Tracerdiffusion of the Fe-Cations in Olivine $(Fe_xMg_{1-x})_2SiO_4$ (III),” Phys. Chem. Miner., 11 161-66 (1984). https://doi.org/10.1007/BF00387846
  29. T.-L. Tsai and R. Dieckmann, “Point Defects and Transport of Matter and Charge in Olivines, $(Fe_xMg_{1-x})_2SiO_4$,” Materials Science Forum, 239-241 399-402 (1997). https://doi.org/10.4028/www.scientific.net/MSF.239-241.399
  30. S. Chakraborty, “Rates and Mechanisms of Fe-Mg Interdiffusion in Olivine at 980${^{\circ}C}$-1300${^{\circ}C}$,” J. Geophys. Res. B. Solid Earth, 102 12317-31 (1997). https://doi.org/10.1029/97JB00208
  31. C.A. Otero Areán and M.C. Trobajo-Fernandez, “Cation Distribution in $Mg_xNi_{1-x}Ga_2O_4$ Oxide Spinels,” Phys. Stat. Sol. (a), 92 443-47 (1985). https://doi.org/10.1002/pssa.2210920213
  32. T. Suzuki, G.S. Murugan, and Y. Ohishi, “Spectroscopic Properties of a Novel Near-Infrared Tunable Laser Material Ni: $MgGa_2O_4$,” J. Lumin., 113 265-70 (2005). https://doi.org/10.1016/j.jlumin.2004.10.022
  33. W. Laqua, “Zur Kinetik der Spinellbildung von $\beta$-$Ga_2O_3$ Mit Zweiwertigen Oxiden II. Tracerdiffusion von $^{63}Ni^{2+}$ und $^{67}Ga^{3+}$ im Nickel-Gallium-Spinell,” J. Sol. Stat. Chem., 14 133-43 (1975). https://doi.org/10.1016/0022-4596(75)90003-1
  34. J. Shi and K. D. Becker, “Kinetics of Cation Distribution in Nickel Gallate Spinel, $NiGa_2O_4$,” Solid State Ionics, submitted, (2009).
  35. R. J. Harrison and A. Putnis, “Determination of the Mechanism of Cation Ordering in Magnesioferrite ($MgFe_2O_4$) from the Time- and Temperature-Dependence of Magnetic Susceptibility,” Phys. Chem. Minerals, 26 322-32 (1999). https://doi.org/10.1007/s002690050192
  36. F. Martignano, G. B. Andreozzi, and A. Dal Negro, “Thermodynamics and Kinetics of Cation Ordering in Natural and Synthetic $Mg(Al, Fe_{3+})_2O_4$ Spinels from in situ High-Temperature X-ray Diffraction,” Am. Mineral., 91 306-12 (2006). https://doi.org/10.2138/am.2006.1880
  37. S. A. T. Redfern, C. M. B. Henderson, K. S. Knight and B. J. Wood, “High-Temperature Order-Disorder in $(Fe_{0.5}Mn_{0.5})_2SiO_4$ and $(Mg_{0.5}Mn_{0.5})_2SiO_4$ Olivines: An in situ Neutron Diffraction study,” Eur. J. Min., 9 287-300 (1997). https://doi.org/10.1127/ejm/9/2/0287
  38. M. Garsche, Spektroskopische und strukturelle Untersuchungen zur Intrakristallinen Ni–Mg-Verteilung in Olivinen, $(Mg{1x}Ni_x)_2SiO_4)$, pp. 95-103, in Ph.D. Thesis, Technische Universität Berlin, Berlin, 1994.
  39. C. M. B. Henderson, S. A. T. Redfern, R. I. Smith, K. S. Knight, and J. M. Charnock, “Composition and Temperature Dependence of Cation Ordering in Ni-Mg Olivine Solid Solutions: A Time-of-Flight Neutron Powder Diffraction and EXAFS Study,” Am. Mineral., 86 1170-87 (2001). https://doi.org/10.2138/am-2001-1007
  40. A. C. Lasaga, “The Atomistic Basis of Kinetics: Defects in Minerals,” pp. 261-319 in Reviews in Mineralogy, Vol. 8, Kinetics of Geochemical Processes. Ed. by A. C. Lasaga and R. J. Kirkpatrick. Mineralogical Society of America, Washington, DC, 1981.