DOI QR코드

DOI QR Code

Development of Perovskite-type Cobaltates and Manganates for Thermoelectric Oxide Modules

  • Weidenkaff, A. (Empa - Swiss Federal Laboratories for Materials Testing and Research Ueberlandstr.) ;
  • Aguirre, M.H. (Empa - Swiss Federal Laboratories for Materials Testing and Research Ueberlandstr.) ;
  • Bocher, L. (Empa - Swiss Federal Laboratories for Materials Testing and Research Ueberlandstr.) ;
  • Trottmann, M. (Empa - Swiss Federal Laboratories for Materials Testing and Research Ueberlandstr.) ;
  • Tomes, P. (Empa - Swiss Federal Laboratories for Materials Testing and Research Ueberlandstr.) ;
  • Robert, R. (Empa - Swiss Federal Laboratories for Materials Testing and Research Ueberlandstr.)
  • Published : 2010.01.31

Abstract

Ceramics with perovskite-type structure are interesting functional materials for several energy conversion processes due to their flexible structure and a variety of properties. Prominent examples are electrode materials in fuel cells and batteries, thermoelectric converters, piezoelectrics, and photocatalysts. The very attractive physical-chemical properties of perovskite-type phases can be modified in a controlled way by changing the composition and crystallographic structure in tailor-made soft chemistry synthesis processes. Improved thermoelectric materials such as cobaltates with p-type conductivity and n-type manganates are developed by following theoretical predictions and tested to be applied in oxidic thermoelectric converters.

Keywords

References

  1. D.M. Rowe, “Thermoelectrics, An Environmentally-friendly Source of Electrical Power,” Renewable Energy, 16 1251-56(1999). https://doi.org/10.1016/S0960-1481(98)00512-6
  2. I. Terasaki, Y. Sasago, and K. Uchinokura, “Large Thermoelectric Power in $NaCo_2O_4$ Single Crystals,” Phys.Rev. B, 56 R12685ff (1997). https://doi.org/10.1103/PhysRevB.56.R12685
  3. K. Fujita, T. Mochida, and K. Nakamura, “High-Temperature Thermoelectric Properties of $Na_xCoO_2$ Single Crystals,” Japanese J. Appl. Phys., 40 4644-47 (2001). https://doi.org/10.1143/JJAP.40.4644
  4. M. Mikami, R. Funahashi, M. Yoshimura, Y. Morii, and T. Sasaki, “High-temperature Thermoelectric Properties of single-crystal $Ca_3Co_2O_6$,” J. Appl. Phys., 94 6579ff (2003). https://doi.org/10.1063/1.1622115
  5. M. Shikano and R. Funahashi, “Electrical and Thermal Properties of Single-crystalline $(Ca_2CoO_3)_{0.7}CoO_2$ with a $Ca_3Co_4O_9$ Structure,” Appl. Phys. Lett., 82 1851-53 (2003). https://doi.org/10.1063/1.1562337
  6. G. Xu, R. Funahashi, M. Shikano, I. Matsubara, and Y. Zhou, “Thermoelectric Properties of the Bi- and Na-substituted $Ca_3Co_4O_9$ System,” Appl. Phys. Lett., 80 3760-62 (2002). https://doi.org/10.1063/1.1480115
  7. R. Funahashi and M. Shikano, “$Bi_2Sr_2Co_2O_y$ Whiskers with High Thermoelectric Figure of Merit,” Appl. Phys. Lett., 81 1459-61 (2002). https://doi.org/10.1063/1.1502190
  8. R. Robert, M.H. Aguirre, P. Hug, A. Reller, and A. Weidenkaff, “High-temperature Thermoelectric Properties of Ln (Co, Ni)$O_3$ (Ln = La, Pr, Nd, Sm, Gd and Dy) Compounds,” Acta Materialia, 55 4965-72 (2007). https://doi.org/10.1016/j.actamat.2007.05.020
  9. H. Muta, K. Kurosaki, and S. Yamanaka, “Thermoelectric Properties of Rare Earth Doped $SrTiO_3$,” J. Alloys and Compounds, 350 292-95 (2003). https://doi.org/10.1016/S0925-8388(02)00972-6
  10. H. Ohta, S. Kim, Y. Mune, T. Mizoguchi, K. Nomura, S. Ohta, T. Nomura, Y. Nakanishi, Y. Ikuhara, M. Hirano, H. Hosono, and K. Koumoto, “Giant Thermoelectric Seebeck Coefficient of a Two-dimensional Electron Gas in $SrTiO_3$,” Nature Materials, 6 129-34 (2007). https://doi.org/10.1038/nmat1821
  11. M. Ohtaki, T. Tsubota, K. Eguchi, and H. Arai, “High-temperature Thermoelectric Properties of $(Zn_{1-x}Al_x)O$,” J. Appl. Phys., 79 1816-18 (1996). https://doi.org/10.1063/1.360976
  12. L. Bocher, M.H. Aguirre, D. Logvinovich, A. Shkabko, R. Robert, M. Trottmann, and A. Weidenkaff, “$CaMn_{1-x}Nb_xO_3$ (x<=0.08) Perovskite-type Phases as Promising New Hightemperature N-type Thermoelectric Materials,” Inorganic Chemistry, 47 8077-85 (2008). https://doi.org/10.1021/ic800463s
  13. A. Maignan, L.B. Wang, S. Hebert, D. Pelloquin, and B. Raveau, “Large Thermopower in Metallic Misfit Cobaltites,” Chemistry of Materials, 14 1231-35 (2001). https://doi.org/10.1021/cm0103850
  14. Y. Wang, N.S. Rogado, R.J. Cava, and N.P. Ong, “Spin entropy as the Likely Source of Enhanced Thermopower in $NaxCo_2O_4$,” Nature, 423 425-28 (2003). https://doi.org/10.1038/nature01639
  15. G. Chen, G. Dresselhaus, M.S. Dresselhaus, J.P. Fleural, and T. Caillat, “Recent Developments in Thermoelectric Materials,” International Materials Reviews, 48 45-66 (2003). https://doi.org/10.1179/095066003225010182
  16. D. Logvinovich, M.H. Aguirre, J. Hejtmanek, R. Aguiar, S.G. Ebbinghaus, A. Reller, and A. Weidenkaff, “Phase Formation, Structural and Microstructural Characterization of Novel Oxynitride-perovskites Synthesized by Thermal Ammonolysis of (Ca,Ba)$MoO_4$ and (Ca,Ba)$MoO_3$,” J. Solid State Chem., 181 2243-49 (2008). https://doi.org/10.1016/j.jssc.2008.05.012
  17. D. Logvinovich, A. Borger, M. Dobeli, S.G. Ebbinghaus, A. Reller, and A. Weidenkaff, “Synthesis and Physical Chemical Properties of Ca-substituted $LaTiO_2N$,” Progress in Solid State Chemistry, 35 281-90 (2007). https://doi.org/10.1016/j.progsolidstchem.2007.01.006
  18. R. Aguiar, A. Weidenkaff, C.W. Schneider, A. Reller, and S.G. Ebbinghaus, “Synthesis and Properties of Oxynitrides $(La,Sr)Ti(O,N)_3$ Thin Films,” Progress in Solid State Chemistry, 35 291-98 (2007). https://doi.org/10.1016/j.progsolidstchem.2007.01.033
  19. S.G. Ebbinghaus, H.-P. Abicht, R. Dronskowski, T. Muller, A. Reller, and A. Weidenkaff, “Perovskite-related Oxynitrides - Recent Developments in Synthesis, Characterisation and Investigations of Physical Properties,” Progress in Solid State Chemistry, 37 173-205 (2009). https://doi.org/10.1016/j.progsolidstchem.2009.11.003
  20. R. Robert, D. Logvinovich, M.H. Aguirre, S.G. Ebbinghaus, L. Bocher, P. Tomes, and A. Weidenkaff, “Crystal Structure, Morphology and Physical Properties of LaCo1-xTixO3${\pm}{\delta}$ Perovskites Prepared by a Citric Acid Assisted Soft Chemistry Synthesis,” Acta Materialia, 58 680-91 (2010). https://doi.org/10.1016/j.actamat.2009.09.046
  21. A. Weidenkaff, R. Robert, M.H. Aguirre, T. Lippert, and S. Canulescu, “Development of Thermoelectric Oxides for Renewable Energy Conversion Technologies,” Renewable Energy, 33 342-47 (2008). https://doi.org/10.1016/j.renene.2007.05.032
  22. E. Krupicka, A. Reller, and A. Weidenkaff, “Morphology of Nanoscaled $LaMO_3$-particles (M=Mn, Fe, Co, Ni) Derived by Citrate Precursors in Aqueous and Alcoholic Solvents,” Cryst. Eng., 5 195-202 (2002). https://doi.org/10.1016/S1463-0184(02)00029-1
  23. A. Weidenkaff, “Preparation and Application of Nanoscopic Perovskite Phases,” Advanced Engineering Materials, 6 709-14 (2004). https://doi.org/10.1002/adem.200400098
  24. J. Rodriguez-Carvajal, FULLPROF, p. 127, Satellite Meeting on Powder diffraction of the XVth Congress of the IUCr, 1990.
  25. L. Bocher, M.H. Aguirre, R. Robert, M. Trottmann, D. Logvinovich, P. Hug, and A. Weidenkaff, “Chimie Douce Synthesis and Thermochemical Characterization of Mesoporous Perovskite-type Titanate Phases,” Thermochim. Acta, 457 11-9 (2007). https://doi.org/10.1016/j.tca.2007.02.013
  26. A. Weidenkaff, R. Robert, M.H. Aguirre, L. Bocher, and L. Schlapbach, “Nanostructured Thermoelectric Oxides with Low Thermal Conductivity,” Phys. Status Solidi., 6 247 (2007).
  27. G. Kotliar and D. Vollhardt, “Strongly Correlated Materials: Insights from Dynamical Mean-Field Theory,” Physics Today, 53-9 (2004).
  28. P.M. Raccah and J.B. Goodenough, “First-Order Localized-Electron <-> Collective Electron Transition in $LaCoO_3$,” Phys.Rev. B, 155 932-43 (1967). https://doi.org/10.1103/PhysRev.155.932
  29. C.N.R. Rao, O. Parkash, and P. Ganguly, “Electronic and Magnetic Properties of $LaNi_{1-x}Co_xO_3$, LaCo1-xFexO3 and LaNi1-xFexO3,” J. of Solid State Chemistry, 15 186-92 (1975). https://doi.org/10.1016/0022-4596(75)90245-5
  30. W. Koshibae and S. Maekawa, “Effect of Spin and Orbital On Thermopower in Strongly Correlated Electron Systems,” J. of Magnetism and Magnetic Materials, 258-59 216-18 (2003).
  31. M.A. Senaris-Rodriguez and J.B. Goodenough, “Magnetic and Transport Properties of the System $La_{1-x}Sr_xCoO_{3-{\delta}}$ (0 https://doi.org/10.1006/jssc.1995.1351
  32. W. Koshibae, K. Tsutsui, and S. Maekawa, “Thermopower in Cobalt Oxides,” Phys.Rev. B, 62 6869-72 (2000). https://doi.org/10.1103/PhysRevB.62.6869
  33. R.R. Heikes, R.C. Miller, and R. Mazelsky, “Magnetic and Electrical Anomalies in $LaCoO_3$,” Physica B: Condensed Matter, 30 1600-8 (1964).
  34. L. Bocher, R. Robert, M.H. Aguirre, L. Schlapbach, and A. Weidenkaff, “Thermoelectric Perovskite-Type Oxides for Geothermal and Solar Energy Conversion,” Proc. of the 4th European Conference on Thermoelectrics, 143 (2006).
  35. P. Migiakis, J. Androulakis, and J. Giapintzakis, “Thermo-Electric Properties of $LaNi_{1-x}Co_xO_3$ Solid Solution,” J. Appl. Phys., 94 7616-20 (2005). https://doi.org/10.1063/1.1629393
  36. G. Chen, “Phonon Heat Conduction in Nanostructures,” International J. Thermal Sciences, 39 471-80 (2000). https://doi.org/10.1016/S1290-0729(00)00202-7
  37. P. Tomes, R. Robert, M. Trottmann, L. Bocher, M. Aguirre, J. Hejtmanek, and A. Weidenkaff, “-type Thermoelectric Oxide Modules (TOM) for Electric Power Generation,” JEM submitted (2009).

Cited by

  1. Featuring a Novel Polyoxocobaltate(III) Anion Based on a Two-Dimensional Architecture of Interconnected Tetrahedra vol.51, pp.22, 2012, https://doi.org/10.1021/ic301637w
  2. Compatibility approach for the improvement of oxide thermoelectric converters for industrial heat recovery applications vol.118, pp.3, 2015, https://doi.org/10.1063/1.4926476