DOI QR코드

DOI QR Code

A Novel Flowerlike Nanostructured CeO2 for Sustainable Energies

  • Li, Hong (Laboratory for Solid State Ionics, Institute of Physics) ;
  • Chen, Liquan (Laboratory for Solid State Ionics, Institute of Physics)
  • Published : 2010.01.31

Abstract

This article presents a brief review of our recent studies on flowerlike nanostructured $CeO_2$ materials. These materials are monodispersed microspheres with peony appearance, open mesoporous structure, large specific surface area and nano-crystalline feature. The applications of this type of novel material to SOFC, ethanol steam reforming and CO oxidation are introduced.

Keywords

References

  1. S. Bernal, J. J. Calvino, M. A. Cauqui, J. M. Gatica, C. Larese, J. A. P. Omil, and J. M. Pintado, “Some Recent Results on Metal/support Interaction Effects in $NM/CeO_2$ (NM : Noble Metal) Catalysts,” Catal. Today, 50 [2] 175-206 (1999). https://doi.org/10.1016/S0920-5861(98)00503-3
  2. J. Kasipar, P. Fornasiero, and M. Graziani, “Use of $CeO_2$-based Oxides in the Three-way Catalysis,” Catal. Today, 50 [2] 285-98 (1999). https://doi.org/10.1016/S0920-5861(98)00510-0
  3. M. Mogensen, N. M. Sammes, and G. A. Tompsett, “Physical, Chemical and Electrochemical Properties of Pure and Doped Ceria”, Solid State Ionics, 129 [1-4] 63-94 (2000). https://doi.org/10.1016/S0167-2738(99)00318-5
  4. A. Bumajdad, J. Eastoe, and A. Mathew, “Cerium Oxide Nanoparticles Prepared in Self-assembled Systems,” Adv. Colloid Interface Sci., 147-48 [Sp. Iss. SI] 56-66 (2009).
  5. Q. Yuan, H. H. Duan, L. L. Li, L. D. Sun, Y. W. Zhang, and C. H. Yan, “Controlled Synthesis and Assembly of Ceriabased Nanomaterials,” J. Colloid Interface Sci., 335 [2] 151-67 (2009). https://doi.org/10.1016/j.jcis.2009.04.007
  6. C.W. Sun, J. Sun, G. L. Xiao, H. R. Zhang, X.P. Qiu, H. Li, and L.Q. Chen, “Mesoscale Organization of Nearly Monodisperse Flowerlike Ceria Microspheres,” J. Phys. Chem. B, 110 [27] 13445-52 (2006). https://doi.org/10.1021/jp062179r
  7. C. W. Sun, G. L. Xiao, H. Li, and L. Q. Chen, “Mesoscale Organization of Flower-Like $La_2O_2CO_3$ and $La_2O_3$ Microspheres,” J. Am. Ceram. Soc., 90 [8] 2576-81(2007). https://doi.org/10.1111/j.1551-2916.2007.01756.x
  8. G. L. Xiao, S. Li, H. Li, and L. Q. Chen, “Synthesis of Doped Ceria with Mesoporous Flowerlike Morphology and Its Catalytic Performance for CO Oxidation,” Microporous Mesoporous Mater., 120 [3] 426-31 (2009). https://doi.org/10.1016/j.micromeso.2008.12.015
  9. E. P. Murray, T. Tsai, and S. A. Barnett, “A Direct-methane Fuel Cell with a Ceria-based Anode,” Nature, 400 [6745] 649-51 (1999). https://doi.org/10.1038/23220
  10. S. Park, J. M. Vohs, and R. J. Gorte, “Direct Oxidation of Hydrocarbons in a Solid-oxide Fuel Cell”, Nature, 404 [6775] 265-67 (2000). https://doi.org/10.1038/35005040
  11. Z. Zhan and S. A. Barnett, “An Octane-Fueled Solid Oxide Fuel Cell,” Science, 308 [5723] 844-47 (2005). https://doi.org/10.1126/science.1109213
  12. M. Mamak, G. S. Metraux, S. Petrov, N. Coombs, G. A. Ozin, and M. A. Green, “Lanthanum Strontium Manganite/Yttria-stabilized Zirconia Nanocomposites Derived from a Surfactant Assisted, Co-assembled Mesoporous Phase,” J. Am. Chem. Soc., 125 [17] 5161-75 (2003). https://doi.org/10.1021/ja027881p
  13. M. Antonietti and G. A. Ozin, “Promises and Problems of Mesoscale Materials Chemistry or Why Meso?,” Chem. Eur. J., 10 [1] 29-41 (2004).
  14. C. W. Sun, H. Li, C. R. Xia, and L. Q. Chen, “Investigations of Mesoporous $CeO_2$–Ru as a Reforming Catalyst Layer for Solid Oxide Fuel Cells,” Electrochem. Comm., 8 [5] 833-38 (2006). https://doi.org/10.1016/j.elecom.2006.03.018
  15. G. L. Xiao, Z. Y. Jiang, H.Li, C. R. Xia, and L. Q. Chen, “Studies on Composite Cathodewith Nanostructured $Ce_{0.9}Sm_{0.1}O_{1.95}$ for Intermediate Temperature Solid Oxide Fuel Cells,” Fuel Cell, 9 [5] 650-56 (2009). https://doi.org/10.1002/fuce.200900011
  16. J. Sun, X. P. Qiu, F. Wu, W. T. Zhu, W. D. Wang, S. J. Hao, and Inter. J. Hydrogen Energy, “Hydrogen from sTeam Reforming of Ethanol in Low and Middle Temperature Range for Fuel Cell Application,” 29 [10] 1075-81 (2004). https://doi.org/10.1016/j.ijhydene.2003.11.004
  17. J. Sun, X. P. Qiu and W. T. Zhu, “H2 from Steam Reforming of Ethanol at Low Temperature Over $Ni/Y_2O_3$, $Ni/La_2O_3$ and $Ni/Al_2O_3$ Catalysts for Fuel-cell Application,” Inter. J. Hydrogen Energy, 30 [4] 437-45 (2005). https://doi.org/10.1016/j.ijhydene.2004.11.005
  18. J. Sun, Y. G. Wang, J. G. Li, G. L. Xiao, L. G. Zhang, H. Li, Y. L. Cheng, C. W. Sun, Z. X. Cheng, Z. C. Dong, and L. Q. Chen, “$H_2$ Production from Stable Ethanol Steam Reforming Over Catalyst of NiO Based on Flowerlike $CeO_2$ Microspheres,” Inter. J. Hydrogen Energy, 2009, in press, doi:10.1016/j.ijhydene.2009.07.020
  19. M. F. Luo, Y. P. Song, X. Y. Wang, G. Q. Xie, Z. Y. Pu, P. Fang, and Y. L. Xie, “Preparation and Characterization of Nanostructured $Ce_{0.9}Cu_{0.1}O_{2{\delta}$ Solid Solution with High Surface Area and Its Application for Low Temperature CO Oxidation,” Catal. Commun., 8 [5] 834-38 (2007). https://doi.org/10.1016/j.catcom.2006.09.017
  20. G. A. El-Shobaky, S. M. El-Khouly, A. M. Ghozza, and G. M. Mohamed, “Surface and Catalytic Investigations of $CuO-Cr_2O_3/Al_2O_3$ System”, Appl. Catal. A, 302 [2] 296-304 (2006). https://doi.org/10.1016/j.apcata.2006.01.022
  21. E. Moretti, M. Lenarda, L. Storaro, A. Talon, T. Montanari, G. Busca, E. Rodríguez-Castellón, A. Jiménez-Lopez, M. Turco, G. Bagnasco, R. Frattini, “One-step Synthesis of a Structurally Organized Mesoporous $CuO-CeO_2-Al_2O_3$ System for the Preferential CO Oxidation”, Appl. Catal. A, 335 [1] 46-55 (2008). https://doi.org/10.1016/j.apcata.2007.11.009
  22. Y. Su, S. P. Wang, T. Y. Zhang, S. R. Wang, B. L. Zhu, J. L. Cao. Z. Y. Yuan, S. M. Zhang, W. P. Huang, and S. H. Wu, “Comparative Study on Catalytic Performances for Lowtemperature CO Oxidation of Cu-Ce-O and Cu-Co-Ce-O Catalysts”, Catal. Lett., 124 [3-4] 405-12 (2008). https://doi.org/10.1007/s10562-008-9493-6
  23. C. W. Sun, H. Li, and L. Q. Chen, “Study of Flowerlike $CeO_2$ Microspheres Used as Catalyst Supports for CO Oxidation Reaction”, J. Phys. Chem. Solids, 68 [9] 1785-90 (2007). https://doi.org/10.1016/j.jpcs.2007.05.005