DOI QR코드

DOI QR Code

Electrodeposition of CuInSe2 Photovoltaic Thin Films and Growth Morphology

CuInSe2 태양전지 박막의 전해증착 및 성장형상

  • Gho, Jung-Hwan (Department of Advanced Materials Engineering, Chungbuk National University) ;
  • Kim, Myung-Han (Department of Advanced Materials Engineering, Chungbuk National University)
  • 고정환 (충북대학교 신소재공학과) ;
  • 김명한 (충북대학교 신소재공학과)
  • Published : 2010.01.27

Abstract

$CuInSe_2$ (CIS) thin films were electrodeposited on Mo-coated glass substrates in acidic solutions containing $Cu^{2+}$, $In^{3+}$, and $Se^{4+}$ ions, depending on deposition parameters such as deposition potential (-0.4 to -0.8 V[SCE]) and pH (1.7 to 1.9). The influences of PH and deposition potential on the atomic composition of Cu, In, and Se in the deposited films were observed. The best chemical composition, approaching 1:1:2 atomic ratio for the elements, was achieved at -0.5 V (SCE) and pH 1.8. The as-deposited films showed low crystallinity and were annealed at 300 to $500^{\circ}C$ for 30 min to improve crystallization. The surface morphologies, microstructures, and crystallographic structures of the annealed films as well as the as-deposited films were analyzed with AFM, SEM, and XRD. The defects of spherical particles appeared on the surfaces of CIS thin films in the as-deposited state and decreased in size and number with increasing annealing temperatures. Additionally, the crystallization to chalcopyrite structure and surface roughness (Ra) of the as-deposited thin films were improved with the annealing process.

Keywords

References

  1. K. H. Yoon, Trends in Metals and Materials Engineering (in Korean), 21(1), 22 (2008).
  2. C. W. Jeon, News Inf. Chem. Eng. (in Korean), 25(4), 385 (2007).
  3. A. F. Fray and P. Lloyd, Thin Solid Films, 58, 29 (1979). https://doi.org/10.1016/0040-6090(79)90202-5
  4. J. Piekoszewski, Solar Energy Materials, 2, 363 (1980). https://doi.org/10.1016/0165-1633(80)90012-X
  5. K. T. L. De silva, W. A. A. Priyantha, J. K. D. S Jayanetti, B. D. Chithrani, W. Siripala, K. Blake, I. M. Darmadasa, Thin Solid Films, 382, 158 (2001). https://doi.org/10.1016/S0040-6090(00)01185-8
  6. K. Bouabid, A. Ihlal, A. Manar, A. Outzourhit, E. L. Ameziane, Thin Solid Films, 488, 62 (2005). https://doi.org/10.1016/j.tsf.2005.04.111
  7. S. Beyhan, S. Suzer, F. Kadirgan, Sol. Energ. Mater. Sol. Cell., 91, 1922 (2007). https://doi.org/10.1016/j.solmat.2007.06.017
  8. M. E. Calixto, P. J. Sebastian, R. N. Bhattacharya, R. Noufi, Sol. Energ. Mater. Sol. Cell., 59, 75 (1999). https://doi.org/10.1016/S0927-0248(99)00033-1
  9. R. N. Bhattacharya, A. M. Fernandez, Sol. Energ. Mater. Sol. Cell., 76, 331 (2003). https://doi.org/10.1016/S0927-0248(02)00285-4
  10. C. J. Huang, T. H. Meen, M. Y. Lai, W. R. Chen, Sol. Energ. Mater. Sol. Cell., 82, 553 (2004). https://doi.org/10.1016/j.solmat.2003.12.008
  11. C. Sene, M. E. Calixto, K. D. Dobson, R. W. Birkmire, Thin Solid Films, 516, 2188 (2008). https://doi.org/10.1016/j.tsf.2007.07.142
  12. J. Kois, S. Bereznev, E. Mellikov, A. Opik, Thin Solid Films, 511-512, 420 (2006). https://doi.org/10.1016/j.tsf.2005.11.075
  13. S. Nakamura, S. Sugawara, A. Hashimoto and A. Yamamoto, Sol. Energ. Mater. Sol. Cell., 50, 25 (1998). https://doi.org/10.1016/S0927-0248(97)00097-4