DOI QR코드

DOI QR Code

Synthesis of Si Nanowire/Multiwalled Carbon Nanotube Core-Shell Nanocomposites

실리콘 나노선/다중벽 탄소나노튜브 Core-Shell나노복합체의 합성

  • Kim, Sung-Won (Department of Materials Science and Engineering, Korea University) ;
  • Lee, Hyun-Ju (Department of Materials Science and Engineering, Korea University) ;
  • Kim, Jun-Hee (Department of Materials Science and Engineering, Korea University) ;
  • Son, Chang-Sik (Department of Electronic Materials Engineering, Silla University) ;
  • Kim, Dong-Hwan (Department of Materials Science and Engineering, Korea University)
  • 김성원 (고려대학교 신소재공학과) ;
  • 이현주 (고려대학교 신소재공학과) ;
  • 김준희 (고려대학교 신소재공학과) ;
  • 손창식 (신라대학교 전자재료공학과) ;
  • 김동환 (고려대학교 신소재공학과)
  • Published : 2010.01.27

Abstract

Si nanowire/multiwalled carbon nanotube nanocomposite arrays were synthesized. Vertically aligned Si nanowire arrays were fabricated by Ag nanodendrite-assisted wet chemical etching of n-type wafers using $HF/AgNO_3$ solution. The composite structure was synthesized by formation of a sheath of carbon multilayers on a Si nanowire template surface through a thermal CVD process under various conditions. The results of Raman spectroscopy, scanning electron microscopy, and high resolution transmission electron microcopy demonstrate that the obtained nanocomposite has a Si nanowire core/carbon nanotube shell structure. The remarkable feature of the proposed method is that the vertically aligned Si nanowire was encapsulated with a multiwalled carbon nanotube without metal catalysts, which is important for nanodevice fabrication. It can be expected that the introduction of Si nanowires into multiwalled carbon nanotubes may significantly alter their electronic and mechanical properties, and may even result in some unexpected material properties. The proposed method possesses great potential for fabricating other semiconductor/CNT nanocomposites.

Keywords

References

  1. R. Ruffo, S. S. Hong, C. K. Chan, R. A. Huggins, Y. J. Cui, Phys. Chem. C, 113, 11390 (2009). https://doi.org/10.1021/jp901594g
  2. C. K. Chan, H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, Y. Cui, Nat. Nanotechnol., 3(1), 31 (2008). https://doi.org/10.1038/nnano.2007.411
  3. J. Li, S. Tang, L. Lu, H. C. Zeng, J. Am. Chem. Soc., 129(30), 9401 (2007). https://doi.org/10.1021/ja071122v
  4. X. Li, Y. Liu, L. Fu, L. Cao, D. Wei, Y. Wang, G. Yu, J. Phys. Chem. C., 111(21), 7661 (2007). https://doi.org/10.1021/jp0689417
  5. V. Sivakov, G. Andrae, A. Gawlik, A. Berger, J. Plentz, F. Falk, S. H. Christiansen, Nano Lett., 9(4), 1549 (2009). https://doi.org/10.1021/nl803641f
  6. J. Wei, Y. Jia, Q. Shu, Z. Gu, K. Wang, D. Zhuang, G. Zhang, Z. Wang, J. Luo, A. Cao, D. Wu, Nano Lett., 7(8), 2317 (2007). https://doi.org/10.1021/nl070961c
  7. M. Aizawa, J. M. Buriak, J. Am. Chem. Soc., 128, 5877 (2006). https://doi.org/10.1021/ja060366x
  8. C. Y. Chen, C. S. Wu, C. J. Chou, T. J. Yen, Adv. Mater., 20(20), 3811 (2008). https://doi.org/10.1002/adma.200702788
  9. K. Q. Peng, Y. J. Yan, S. P. Gao, J. Zhu, Adv. Mater., 14(16), 16 (2002). https://doi.org/10.1002/1521-4095(20020816)14:16<1164::AID-ADMA1164>3.0.CO;2-E
  10. K. Peng, Y. Wu, H. Fang, X. Zhong, Y. Xu, J. Zhu, Angew. Chem. Int. Ed., 44(18), 2737 (2005). https://doi.org/10.1002/anie.200462995
  11. A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, P. Yang, Nature, 451(7175), 163 (2008). https://doi.org/10.1038/nature06381
  12. V. R. Guzman, S. L. Figueredo, A. J. Hart, S. A. III Steiner, A. H. Slocum, B. L. Wardle, Nanotechnology. 20(40), 405611 (2009). https://doi.org/10.1088/0957-4484/20/40/405611
  13. G. D. Nessim, M. Seita, K. P. O'Brien, A. J. Hart, R. K. Bonaparte, R. R. Mitchell, C. V . Thompson, Nano Lett., 9(10), 3398 (2009). https://doi.org/10.1021/nl900675d
  14. E. R. Meshot, D. L. Plata, S. Tawfick, Y. Zhang, E. A. Verploegen, A. J. Hart, ACS Nano, 3(9), 2477 (2009). https://doi.org/10.1021/nn900446a
  15. M. Yu, H. H. Funke, J. L. Falconer, R. D. Noble, Nano Lett., 9(1), 225 (2009). https://doi.org/10.1021/nl802816h
  16. H. W. Kim, K. S. Kim, J. H. Lee, Metals and Materials Int., 8(2), 183 (2002). https://doi.org/10.1007/BF03027016
  17. S. B. Sinnott, R. Andrews, Crit. Rev. Solid State Mat. Sci., 26(3), 145 (2001). https://doi.org/10.1080/20014091104189
  18. L. W. Yin, Y. Bando, Y. C. Zhu, M. S. Li, Appl. Phys. Lett., 84(26), 5314 (2004). https://doi.org/10.1063/1.1766079
  19. X. Shen, Z. Jiang, C. Gao, Z. Xu, Z. Xie, L. Zheng, J. Mater. Chem., 17(13), 1326 (2007). https://doi.org/10.1039/b614769k
  20. Z. Wang, Z. Zhao, J. Qiu, Chem. Mater. 19(14), 3364 (2007). https://doi.org/10.1021/cm070743k
  21. L. Jankovic, D. Gournis, P. N. Trikalitis, I. Arfaoui, T. Cren, P. Rudolf, M. H. Sage, T. T. M. Palstra, B. Kooi, J. D. Hosson, M. A. Karaakassides, K. Dimos, A. Moukarika, T. Bakas, Nano Lett., 6(6), 1131 (2006). https://doi.org/10.1021/nl0602387
  22. C. Valles, M. Perez-Mendoza, W. K. Maser, M. T. Martinez, L. Alvarez, J. L. Sauvajol, A. M. Benito, Carbon, 47, 998 (2009). https://doi.org/10.1016/j.carbon.2008.11.047
  23. W. K. Han, Y. N. Yoon, C. S. Yoon, Y. H. Choa, S. T. Oh and S. G. Kang, Kor. J. Mater. Res., 19(10), 517 (2009). https://doi.org/10.3740/MRSK.2009.19.10.517