DOI QR코드

DOI QR Code

Thickness Dependent Properties of Al-doped ZnO Film Prepared by Using the Pulsed DC Magnetron Sputtering with Cylindrical Target

원통형 타겟 타입 Pulsed DC Magnetron Sputtering에서 두께 변화에 따른 Al-doped ZnO 박막의 특성 변화

  • Shin, Beom-Ki (Information and Electronic Materials Research Laboratory, Department of Materials Science and Engineering, Yonsei University) ;
  • Lee, Tae-Il (Information and Electronic Materials Research Laboratory, Department of Materials Science and Engineering, Yonsei University) ;
  • Park, Kang-Il (SNTEK Co., Ltd.) ;
  • Ahn, Kyoung-Jun (SNTEK Co., Ltd.) ;
  • Myoung, Jae-Min (Information and Electronic Materials Research Laboratory, Department of Materials Science and Engineering, Yonsei University)
  • Published : 2010.01.27

Abstract

Various thicknesses of Al-doped ZnO (AZO) films were deposited on glass substrate using pulsed dc magnetron sputtering with a cylindrical target designed for large-area high-speed deposition. The structural, electrical, and optical properties of the films of various thicknesses were characterized. All deposited AZO films have (0002) preferred orientation with the c-axis perpendicular to the substrate. Crystal quality and surface morphology of the films changed according to the film thickness. The samples with higher surface roughness exhibited lower Hall mobility. Analysis of the measured data of the optical band gap and the carrier concentration revealed that there were no changes for all the film thicknesses. The optical transmittances were more than 85% regardless of film thickness within the visible wavelength region. The lowest resistivity, $4.13\times10^{-4}\Omega{\cdot}cm^{-1}$ was found in 750 nm films with an electron mobility $(\mu)$ of $10.6 cm^2V^{-1} s^{-1}$ and a carrier concentration (n) of $1.42\times10^{21} cm^{-3}$.

Keywords

References

  1. T. Minami, T. Miyata and Y. Ohtani, Phys. Stat. Sol., 204, 3145 (2007). https://doi.org/10.1002/pssa.200622533
  2. W. J. Jeong, S. K. Kim and G. C. Park, Thin Solid Films, 506-507, 180 (2006). https://doi.org/10.1016/j.tsf.2005.08.213
  3. W. S. Lan and S. J. Fonash, J. Electron. Mater., 16, 141 (1987). https://doi.org/10.1007/BF02655478
  4. H. Y. Kim, J. H. Kim, Y. J. Kim, K. H. Chae, C. N. Whang, J. H. Song and S. Im, Opt. Mater., 17, 141 (2001). https://doi.org/10.1016/S0925-3467(01)00037-4
  5. M. Chen, Z. L. Pei, X. Wang, C. Sun and L. S. Wen, J. Vac. Sci. Technol., A 19, 963 (2001). https://doi.org/10.1116/1.1368836
  6. Y. J. Kim, J. S. Cho, J. C. Lee, J. S. Wang, J. S. Song and K. H. Yoon, Kor. J. Mater. Res., 19(5), 245 (2009). https://doi.org/10.3740/MRSK.2009.19.5.245
  7. H. Ko, W. P. Tai, K. C. Kim, S. H. Kim, S. J. Suh and Y. S. Kim,. J. Cryst. Growth, 277, 352 (2005). https://doi.org/10.1016/j.jcrysgro.2005.01.061
  8. B. Z. Dong, G. J. Fang, J. F. Wang, W. J. Guan and X. Z. Zhao J. Appl. Phys., 101, 033713 (2007). https://doi.org/10.1063/1.2437572
  9. T. Minami, Y. Minamino, S. Ida and T. Miyata, Thin Solid Films, 416, 92 (2002). https://doi.org/10.1016/S0040-6090(02)00706-X
  10. R. E. Marotti, C. D. Bojorge, E. Broitman, H. R. Canepa, J. A. Badán, E. A. Dalchiele and A. J. Gellman, Thin Solid Films, 517, 1077 (2008). https://doi.org/10.1016/j.tsf.2008.06.028
  11. J. O'Brien and P. J. Kelly, Surf. Coat. Technol. 142-144, 621 (2001). https://doi.org/10.1016/S0257-8972(01)01058-1
  12. R. Cebulla, R. Werndt and K. Ellmer, J. Appl. Phys., 83, 1087 (1998). https://doi.org/10.1063/1.366798
  13. P. J. Kelly, G. West, Y. N. Kok, J. W. Bradley, I. Swindells, and G. C. B. Clarke, Surf. Coat. Technol., 202, 952 (2007). https://doi.org/10.1016/j.surfcoat.2007.04.130
  14. B. C. Mohanty, Y. H. Jo, D. H Yeon, I. J. Choi and Y. S. Cho, Appl. Phys. Lett., 95, 062103 (2009). https://doi.org/10.1063/1.3202399
  15. B. -Z. Donga, G. -J Fang, J. -F. Wang, W. -J Guan and X. -Z. Zhao, J. Appl. Phys., 101, 033713 (2007). https://doi.org/10.1063/1.2437572
  16. G. H. Lee, Y. Yamamoto, M. Kourogi and M. Ohtsu, Thin Solid Films, 386, 117 (2001). https://doi.org/10.1016/S0040-6090(01)00764-7