DOI QR코드

DOI QR Code

A Study on Thermal Shock of Ceramic Monolithic Substrate

세라믹 모노리스 담체의 열충격 특성에 관한 연구

  • Baek, Seok-Heum (Dept. of Mechanical Engineering, Dong-A Univ.) ;
  • Park, Jae-Sung (Dept. of Vehicle Engineering, Graduate School of Industry & Science, Kangwon Nat'l Univ.) ;
  • Kim, Min-Gun (Dept. of Mechanical & Biomedical Engineering, Kangwon Nat'l Univ.) ;
  • Cho, Seok-Swoo (Dept. of Vehicle Engineering, Kangwon Nat'l Univ.)
  • 백석흠 (동아대학교 기계공학과) ;
  • 박재성 (강원대학교 산업과학대학원) ;
  • 김민건 (강원대학교 기계메카트로닉스공학부) ;
  • 조석수 (강원대학교 기계자동차공학부)
  • Published : 2010.02.01

Abstract

Technical ceramics, due to their unique physical properties, are excellent candidate materials for engineering applications involving extreme thermal and chemical environments. When ceramics are rapidly cooled, they receive thermal shock. The thermal shock parameter is defined as the critical temperature difference. The critical temperature difference for ceramic parts is influenced by its size, the convective heat transfer coefficient, etc. The thermal shock for a component is analyzed by using the transient thermal stress. If the transient thermal stress exceeds the modulus of rupture (MOR), cracking by thermal shock is initiated. The critical temperature difference for water is less than the critical temperature difference for air. The three-way catalyst substrate used in this study has an adequate performance against thermal shock because its radial and axial temperature differences existed below the critical temperature differences.

공업용 세라믹은 자체의 특이한 물리적 특성으로 인하여 극한의 열 및 화학적 환경에서도 적용할 수 있는 우수한 고온 재료이다. 세라믹은 고온에서 저온으로 빠르게 이동되면 열충격을 받는다. 본 연구에서는 열충격에 대한 매개변수로 임계온도차이를 제안한다. 세라믹 부품에 대한 임계온도차이는 부품 크기와 대류열전달계수 등에 의해 영향을 받는다. 부품의 열충격 특성은 비정상 열응력에 의해 평가된다. 비정상 열응력이 파단계수를 초과한다면 열충격 균열이 표면에서 시작된다고 가정할 수 있다. 물에 대한 임계온도차이는 공기에 대한 임계온도차이보다 적다. 본 연구에서 사용된 국내 승용차용 삼원 촉매 담체는 반경 및 축방향 온도차이가 임계온도차이 아래에 존재하므로 충분한 열충격 성능을 가지고 있었다.

Keywords

References

  1. Gulati, S. T., Widjaja, S., Hampton, L. E. and Roe, T. A., 2003, "Factors Affecting Severity of Oven Shock Test for Ceramic Substrates," SAE Paper No. 2003-01-3074
  2. ASTM Standard C1525-04, 2004, Standard Test Method for Determination of Thermal Shock Resistance for Advanced Ceramics by Water Quenching, ASTM International, pp. 1-8
  3. Gulati, S. T., 1983, "Thermal Stresses in Ceramic Wall Flow Diesel Filters," SAE Paper No. 830079.
  4. Gulati, S. T., 1999, "Performance Parameter for Advanced Ceramic Catalyst Supporsts," SAE Paper No. 1999-01-3631.
  5. Hugot, F. and Glandus, J. C., 2007, "Thermal Shock of Alumina by Compressed Air Cooling," Journal of the European Ceramic Society, Vol. 27, pp. 1919-1925. https://doi.org/10.1016/j.jeurceramsoc.2006.06.012
  6. Gulati, S. T., Cooper, B. J., Hawker, P. N., Douglas, J. M. K. and Winterborn, D. J. W., 1991, "Optimization of Substrate Washcoat Interaction for Improved Catalyst Durability," SAE Paper No. 910732.
  7. Singh, J. P., Tree, Y. and Hasselman, D. P. H., 1981, "Effect of Bath and Specimen Temperature on the Thermal Stress Resistance of Brittle Ceramics subjected to Thermal Quenching," Journal of Materials Science, Vol. 16, pp. 2109-2118. https://doi.org/10.1007/BF00542371
  8. Legendre, B. and Osterstock, F., 1997, "On the Quantification of Quenching Transient Thermal Stresses in Brittle Solids using Vickers Indentations," Journal of Materials Science, Vol. 16, pp. 584-587. https://doi.org/10.1023/A:1018582225378
  9. Ozyener, T., Satyamurthy, K., Knight Charles Eugeng, Jitendra P. S., Hasselman, D. P. H. and Ziegler, G., 1982, "Effect of $\Delta$T-and Spatially Varying Heat Transfer Coefficient on Thermal Stress Resistance of Brittle Ceramics Measured by the Quenching Method," Journal of the American Ceramic Society, Vol. 66, No. 1, pp. 53-58. https://doi.org/10.1111/j.1151-2916.1983.tb09968.x
  10. McAdams, W. H, 1954, Heat Transmission, 3ed, McGraw-Hill Inc., NewYork.
  11. Park, J. S., Baek, S. H., Joo, W. S. and Cho, S. S., 2009, "A Study on Elastic Behavior of Ceramic Monolithic Substrate," Proceedings of the KSME 2009 Spring Annual Meeting, Jeju, pp. 393-398.
  12. ANSYS User's and Theory Manual Version 11, 2008, ANSYS Inc.
  13. Absi, J. and Glandus, J. C., 2004, "Improved Method for Severe Thermal Shocks Testing of Seramics by Water Quenching," Journal of the European Ceramic Society, Vol. 24, pp. 2835-2838. https://doi.org/10.1016/j.jeurceramsoc.2003.09.024
  14. Baek, S. H., Park, J. S., Choi, H. J., Cho, S. S. and Joo, W. S., 2008, "High Temperature Design Criteria of Cordierite Ceramic Substrate in Four-point Bending Test," Proceedings of the KSME 2008 Spring Annual Meeting, Pyeongchang, pp. 173-174.
  15. Park, J. S., Cho, S. S., Kim, M. G., Shin, S. K. and Kwon, I. K., 2009 "A Study on Thermal Shock of Ceramic Monolithic Substrate," Proceedings of the KSME 2009 Spring Annual Meeting, Jeju, pp. 387-392.

Cited by

  1. Optimization Techniques for the Inverse Analysis of Service Boundary Conditions in a Porous Catalyst Substrate with Fluid-Structure Interaction Problems vol.35, pp.10, 2011, https://doi.org/10.3795/KSME-A.2011.35.10.1161
  2. An Effective Approach of Equivalent Elastic Method for Three-Dimensional Finite Element Analysis of Ceramic Honeycomb Substrates vol.35, pp.3, 2011, https://doi.org/10.3795/KSME-A.2011.35.3.223