DOI QR코드

DOI QR Code

Measuring the Tensile Properties of the Nanostructure Using a Force Sensor

힘센서를 이용한 나노구조체의 인장물성 측정

  • Published : 2010.02.01

Abstract

It is important to measure the mechanical properties of nanostructures because they are required to determine the lifetime and reliability of nanodevices developed for various fields. In this study, tensile tests for a multi-walled carbon nanotube (MWCNT) and a ZnO nanorod were performed in a scanning electron microscope (SEM). The force sensor was a cantilever type and was mounted in front of a nanomanipulator placed in the chamber. The nanomanipulator was controlled using a joystick and personal computer. The nanostructures dispersed on the cut area of a transmission electron microscope (TEM) grid were gripped with the force sensor by exposing an electron beam in the SEM; the tensile tests were the performed. The in situ tensile loads of the nanostructure were obtained. After the tensile test, the cross-sectional areas of the nanostructures were observed by TEM and SEM. Based on the TEM and SEM results, the elastic modulus of the MWCNT and ZnO nanorod were calculated to be 0.98 TPa and 55.85 GPa, respectively.

다양한 분야에 활용이 가능한 나노소자의 개발과 나노소자의 수명 및 신뢰성을 결정하기 위해서 나노구조체의 역학물성 측정은 중요하다. 본 연구에서는 다중벽탄소나노튜브(MWCNT)와 산화아연나노막대(ZnO nanorod)의 인장시험을 전자주사현미경(SEM) 내부에서 수행하였다. 챔버내부에 구축된 나노조작기 앞에 힘센서가 장착되었고, 나노조작기는 조이스틱과 컴퓨터로 제어 가능하도록 설계되었다. 반으로 자른 투과전자현미경(TEM)그리드 위에 분산된 나노구조체는 전자주사를 통하여 힘센서와 고정된 후 인장시험이 수행되었다. 인장시험 후 TEM과 SEM을 통하여 파단면을 측정하였고 MWCNT와 ZnO nanorod의 탄성계수는 0.98TPa, 55.85GPa로 각각 측정되었다.

Keywords

References

  1. Terrones, M., 2003, "Science and Technology of the Twenty-First Century: Synthesis, Properties, and Applications of Carbon Nanotubes," Annu. Rev. Mater. Res., Vol. 33, pp. 419-501. https://doi.org/10.1146/annurev.matsci.33.012802.100255
  2. Xu, N. S. and Huq, S. E., 2005, "Novel Cold Cathode Materials and Application," Mater. Sci. and Eng. R., Vol. 48, pp. 47-189. https://doi.org/10.1016/j.mser.2004.12.001
  3. Lim, S. C., Lee, K., Lee, I, H. and Lee, Y. H., 2007, "Field Emission and Applications of Carbon Nanotubes," Nano : brief reports and reviews, Vol. 2, No. 2, pp. 69-89.
  4. Choi, J. H., Zoulkarneev, A. R., Park, Y. J., Chung, D. S., Song, B. K., Kang, H. S., Baik, C. W., Han, I. T., Kim, H. J., Shin, M. J., Kim, H. J., Oh, T. S., Jin, Y. W., Kim, J. M. and Lee, N., 2005, "Optimization of Electron Beam Focusing for Gated Carbon Nanotube Field Emitter Arrays,"IEEE Trans. Elec. Dev., Vol. 52, No. 12, pp. 2584-2590. https://doi.org/10.1109/TED.2005.859595
  5. Lee, S. and Jeon, D. Y., 2006, "Effect of Degassed Elements on the Degradation Behavior of Carbon Nanotube Cathode in Sealed Field Emission-Backlight Unit," Appl. Phys. Lett., Vol. 88, No. 6, pp. 063502. https://doi.org/10.1063/1.2167791
  6. Yue, G. Z., Qiu, Q., Gao, B., Cheng, Y., Zhang, J., Shimoda, H., Chang, S., Lu, J. P. and Zhou, O., 2002, "Generation of Continuous and Pulsed Diagnostic Imaging X-ray Radiation using a Carbon-Nanotube-based Field-Emission Cathode," Appl. Phys. Lett., Vol. 81, No. 2, pp. 355-357. https://doi.org/10.1063/1.1492305
  7. Bower, C. Zhu, W., Shalom, D., Lopez, D., Chen, L. H. and Gammel, P. L., 2002, "On-Chip Vacuum Microtriode using Carbon Nanotube Field Emitters," Appl. Phys. Lett., Vol. 80, No. 20, pp. 3820-3822. https://doi.org/10.1063/1.1480884
  8. Treacy, M. M. J., Ebbesen, T. W. and Gibson, J. M., 1996, "Exceptionally High Young's Modulus Observed for Individual Carbon Nanotubes," Nature, Vol. 381, No. 6584, pp. 678-680. https://doi.org/10.1038/381678a0
  9. Li, H., Zhang, Q. and Li, J., 2006, "Interpretation of Coulomb Oscillations in Carbon-Nanotube-based Field Effect Transistors," Phys. Rev. B, Vol. 73, No. 23, pp. 235431. https://doi.org/10.1103/PhysRevB.73.235431
  10. Da Silva, L. B., Fagan, S. B. and Mota, R., 2004, "Ab Initio Study of Deformed Carbon Nanotube Sensors for Carbon Monoxide Molecules," Nanoletter, Vol. 4, No. 1, pp. 65-67. https://doi.org/10.1021/nl034873d
  11. Duan, X., Huang, Y., Agarwal, R. and Lieber, C. M., 2003, "Single Nanowire - Electrical Driven Lasers," Nature, Vol. 421, No. 6920. pp. 241-245. https://doi.org/10.1038/nature01353
  12. Tseng, Y. K., Huang, C. J., Cheng, H. M., Lin, I. N., Liu, K. S. and Chen, I. C., 2003, "Characterization and Field-Emission Properties of Needle–like Zinc Oxide Nanowires Grown Vertically on Conductive Zinc Oxide Films," Adv. Funct. Mater., Vol. 13, No. 10, pp. 811-814. https://doi.org/10.1002/adfm.200304434
  13. Li, S. Y., Lin, C. Y. and Tseng, T. Y., 2004, "Field Emission and Photofluorescent Characteristics of Zinc Oxide Nanowires Synthesized by a Metal Catalyzed Vapor-Liquid-Solid Process," J. Appl. Phys., Vol. 95, No. 7, pp. 3711-3716. https://doi.org/10.1063/1.1655685
  14. Kind, H., Yan, H., Messer, B., Law, M. and Yang, P., 2002, "Nanowire Ultraviolet Photodetectors and Optical Switch," Adv. Mater., Vol. 14, No. 2, pp.158-160. https://doi.org/10.1002/1521-4095(20020116)14:2<158::AID-ADMA158>3.0.CO;2-W
  15. Li, Q. H., Liang, Y. X., Wan, Q. and Wang, T. H., 2004, "Oxygen Sensing Characteristics of Individual ZnO Nanowire Transistors," Appl. Phys. Lett., Vol. 85, No. 26, pp. 6389-6391. https://doi.org/10.1063/1.1840116
  16. Hernandez, E. and Gaze, C., 1999, "Elastic Properties of single-wall Nanotubes," Appl. Phys A, Vol.68, No. 3, pp. 287-292. https://doi.org/10.1007/s003390050890
  17. Salvetat, J. P., Kulik, A. J., Bonard, J. M., Briggs, G. A. D., Stockli, T., Metenier, K., Bonnamy, S., Beguin, F., Burnham, N. A. and Forro, L., 1999, "Elastic Modulus of Ordered and Disordered Multiwalled Carbon Nanotube," Adv. Mater., Vol. 11, No. 2, pp. 161-165. https://doi.org/10.1002/(SICI)1521-4095(199902)11:2<161::AID-ADMA161>3.0.CO;2-J
  18. Yu, M. F., Lourie, O., Dyer, M. J., Moloni, K., Kelly, T. F. and Ruoff, R. S., 2000, "Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load," Ame. Assoc. Adv. Sci., Vol. 287, No. 5453, pp. 637-640. https://doi.org/10.1126/science.287.5453.637
  19. Song, J., Wang, X., Riedo, E. and Wang, Z. L., 2005, "Elastic Property of Vertically Aligned Nanowires," Ame. Chem. Soc., Vol. 5, No. 10, pp. 1954-1958. https://doi.org/10.1021/nl051334v
  20. Hiang, Y., Bai, Xuedong and Zhang, Y., 2006, "In situ Mechanical Properties of Individual ZnO Nanowires and the Mass Measurement of Nanoparticles," J. Phys: Condens. Matter., Vol. 18, No. 15, pp. L179-L184. https://doi.org/10.1088/0953-8984/18/15/L03
  21. Desai, A. V. and Haque, M. A., 2007, "Mechanical Properties of ZnO Nanowire," Sens. Act. A: Phys., Vol. 134, No. 1, pp. 169-176. https://doi.org/10.1016/j.sna.2006.04.046
  22. Hoffmann, S., Ostlund, F., Michler, J., Fan, H. J., Zacharias, M., Christiansen, S. H. And Ballif, C., 2007, "Fracture Strength and Young's Modulus of ZnO Nanowires," Nanotechnology, Vol. 18, No. 20, pp. 205503. https://doi.org/10.1088/0957-4484/18/20/205503
  23. Jang, H. S., Kwon, S. H., Kim, A. K. And Nahm, S. H., 2006. "Tensile Test of Individual Multi Walled Carbon Nanotube Using Nano-Manipulator insideScanning Electron Microscope," Key. Eng. Mater., Vol. 326, No. 1, pp. 326-328.
  24. Chen, C. Q., Shi, Y., Zhang, Y. S., Zhu, J. and Yan, Y. J., 1996, "Size Dependence of Young's Modulus in ZnO Nanowires," Phys. Rev. Lett., Vol. 96, No. 7, pp. 075505. https://doi.org/10.1103/PhysRevLett.96.075505