Zanthoxylum rhetsa Stem Bark Extract Inhibits LPS-induced COX-2 and iNOS expression in RAW 264.7 Cells via the NF-${\kappa}B$ Inactivation

  • Received : 2010.11.11
  • Accepted : 2010.12.13
  • Published : 2010.12.31

Abstract

The methanol extract of Zanthoxylum rhetsa (MZRR) were evaluated for its ability to suppress the formation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in lipopolysaccharide (LPS)-activated RAW 264.7 macrophages. MZRR presented an inhibition of LPS-induced production of nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) in RAW 264.7 macrophages. Western blotting and RT-PCR analyses demonstrated that MZRR significantly inhibited the protein and mRNA expressions of iNOS and COX-2 in LPS-activated macrophages in a dose-dependent manner. LPS-induced COX-2, iNOS, and nuclear factor kappa beta (NF-${\kappa}B$) activity were also decreased in the presence of MZRR. The production of tumor necrosis factor-$\alpha$ (TNF-$\alpha$), the mRNA expression levels of pro-inflammatory cytokines, including TNF-$\alpha$ and IL-$1{\beta}$, were reduced after MZRR administration in a dose dependent-manner. These results suggest that the MZRR extract involved in the inhibition of iNOS and COX-2 via the NF-${\kappa}B$ pathway, revealing a partial molecular basis for anti-inflammatory properties of the MZRR extract.

Keywords

References

  1. Ahsan, M., Zaman, T.A., Hasan, C.M., Ito, C., and Aslam, S.K.N., Constituents and cytotoxicity of Zanthoxylum stem bark. Fitoterapia 71, 697-700 (2000). https://doi.org/10.1016/S0367-326X(00)00214-8
  2. Arias-Negrete, S., Keller, K., and Chadee, K., Proinflammatory cytokines regulate cyclooxygenase-2 mRNA expression in human macrophages. Biochem. Biophys. Res.Commun. 208, 582-589 (1995). https://doi.org/10.1006/bbrc.1995.1378
  3. Cao, L.H., Lee, Y.J, Kang, D.G, Kim, J.S., and Lee, H.S., Effect of Zanthoxylum schinifolium on TNF-alpha-induced vascular inflammation in human umbilical vein endothelial cells. Vasc. Pharmacol. 50, 200-207 (2009). https://doi.org/10.1016/j.vph.2009.01.008
  4. Chi, V.V., Dictionary of Vietnamese medicinal plants: Medical Publishing House, Hanoi, Vietnam, PP. 622-623 (1997).
  5. Chun, K.S., Kim, S.H., Song, Y.S., and Surh, Y.J., Celecoxib inhibits phorbol esterinduced expression of COX-2 and activation of AP-1 and p38 MAP kinase in mouse skin. Carcinogenesis 25, 713-722 (2004).
  6. Dharmaratne, H.R.W., Herath, H.M.A.S., and Jamie, J.F., Antiinflammatory active agent from Zanthoxylum rhetsa. ACGC Chem. Res. Commun. 8, 16-19 (1998).
  7. Dinarello, C.A., The IL-1 family and inflammatory diseases. Clin. Exp. Rheumatol. 20, S1-13 (2002).
  8. Goetzl, E.J., An, S., and Smith, W.L., Specificity of expression and effects of eicosanoid mediators in normal physiology and human diseases. The FASEBJ J. 9, 1051-1058 (1995). https://doi.org/10.1096/fasebj.9.11.7649404
  9. Han, E.H., Hwang, Y.P., Kim, H.G., and Jeong, H.G., Inflammatory effect of endosulfan via NF-kappaB activation in macrophages. Biochem. Biophys. Res. Commun. 355, 860-865 (2007). https://doi.org/10.1016/j.bbrc.2007.01.062
  10. Hla. T. and Neilson, K., Human cyclooxygenase-2 cDNA. Proc. Natl. Acad. Sci. 89, 7384-7388 (1992). https://doi.org/10.1073/pnas.89.16.7384
  11. Hsieh, C.F., Flora of Taiwan: Epoch: Taiwan (1993).
  12. Joy, M.T., Verghese, J., Retamar, J.A., Talenti, E.C.J., Catalan, C.A.N., and Gros, E.G., Essential oil of Zanthoxylum rhetsa. Flav. Fragran. J. 1, 165-168 (2006).
  13. Kim, J.Y., Jung, K.S., and Jeong, H.G., Suppressive effects of the kahweol and cafestol on cyclooxygenase-2 expression in macrophages. FEBS Letters 569, 321-326 (2004). https://doi.org/10.1016/j.febslet.2004.05.070
  14. Kosaka, T., Miyata, A., Ihara, H., Hara, S., Sugimoto, T., Takeda, O., Takahashi, E., and Tanabe, T., Characterization of the human gene (PTGS2) encoding prostaglandin-endoperoxide synthase 2. Eur. J. Biochem. 221, 889-897 (1994). https://doi.org/10.1111/j.1432-1033.1994.tb18804.x
  15. Ledebur, H.C. and Parks, T.P., Transcriptional regulation of the intercellular adhesion molecule-1 gene by inflammatory cytokines in human endothelial cells. Essential roles of a variant NF-$\kappa$B site and p65 homodimers. J. Biol. Chem. 270, 933-943 (1995). https://doi.org/10.1074/jbc.270.2.933
  16. Lee, M.H., Lee, J.M., Jun, S.H., Lee, S.H., Kim, N.W., Lee, J.H., Ko, N.Y., Mun, S.H., Kim, B.K., Lim, B.O., Choi, D.K., and Choi, W.S., The anti-inflammatory effects of Pyrolae herba extract through the inhibition of the expression of inducible nitric oxide synthase (iNOS) and NO production. J. Ethnopharmacol. 112, 49-54 (2007). https://doi.org/10.1016/j.jep.2007.01.036
  17. Lee, Y.J., Kao, E.S., Chu, C.Y., Lin, W.L., Chiou, Y.H., and Tseng, T.H., Inhibitory effect of ailanthoidol on 12-O-tetradecanoyl-phorbol-13- acetate-induced tumor promotion in mouse skin. Oncol. Reports 16, 921-927 (2006).
  18. Li, Q. and Verma, M., NF-B regulation in the immune system. Nat. Rev.:Immun. 2, 725-734 (2002). https://doi.org/10.1038/nri910
  19. Lima, L.M., Perazzo, F.F., Tavares Carvalho, J.C., and Bastos, J.K., Antiinflammatory and analgesic activities of the ethanolic extracts from Zanthoxylum riedelianum (Rutaceae) leaves and stem bark. J. Pharm. Pharmacol. 59, 1151-1158 (2007). https://doi.org/10.1211/jpp.59.8.0014
  20. Loi, D.T., Vietnamese Medicinal Plants and Ingredients: Medical Publishing House, Hanoi, Vietnam, PP 1274 (2001).
  21. Mathur, R.K., Ramaswamy, S.K., Rao, A.S., and Bhattarcharya, S.C., Isolation of an oxidodiol from Zanthoxylum rhetsa. Tetradron. 23, 2495-2498 (1967). https://doi.org/10.1016/0040-4020(67)80086-3
  22. Pai, V., Savadi, R.V., and Bhandarkar, A., Pharmacognostic and phytochemical investigation of stem bark of Zanthoxylum rhetsa. Pharmacog. J. 1, 33-36 (2009).
  23. Prempeh, A. and Mensah-Attipoe, J., Crude aqueous extract of the root bark of Zanthoxylum xanthoxyloides inhibits white blood cells migration in acute inflammation. Ghana Med. J. 42, 117-119 (2008).
  24. Rahman, M.T., Alimuzzaman, M., Ahmad, S., and Asad Chowdhury, A., Antinociceptive and antidiarrhoeal activity of Zanthoxylum rhetsa. Fitoterapia 73, 340-342 (2002). https://doi.org/10.1016/S0367-326X(02)00083-7
  25. Ross, R., Atherosclerosis-an inflammatory disease. N. Eng. J. Med. 340, 115-126 (1999). https://doi.org/10.1056/NEJM199901143400207
  26. Saleem, M., Lupeol, a novel anti-inflammatory and anti-cancer dietary triterpene. Cancer Lett. 285, 109-115 (2009). https://doi.org/10.1016/j.canlet.2009.04.033
  27. Southan, G.J. and Szabo, C., Selective pharmacological inhibition of distinct nitric oxide synthase isoforms. Biochem. Pharmacol. 51, 383-394 (1996). https://doi.org/10.1016/0006-2952(95)02099-3
  28. Thipthaviphone, S., Phan, V.K., Nguyen, V.T., and Nguyen, T.B.T., Three alkaloids from the plant Zanthoxylum rhetsa (Rutaceae) grown in Hua Phan Province (PDR of Laos). Tap Chi Duoc Hoc 49, 33-38 (2009).
  29. Tsuji, S., Tsujii, M., Kawano, S., and Hori, M., Cyclooxygenase-2 upregulation as a perigenetic change in carcinogenesis. J. Exp. Clin. Cancer Res. 20, 117-129 (2001).
  30. Yadav, A.K. and Tangpu, V., Therapeutic efficacy of Zanthoxylum rhetsa DC extract against experimental Hymenolepis diminuta (Cestoda) infections in rats. J . Parasit. Dis. 33, 42-47 (2009). https://doi.org/10.1007/s12639-009-0007-2
  31. Zang, M., Xu, S., Maitland-Toolan, K.A., Zuccollo, A., Hou, X., Jiang, B., Wierzbicki, M., Verbeuren, T.J., and Cohen, R.A., Polyphenols stimulate AMP-activated protein kinase, lower lipids, and inhibit accelerated atherosclerosis in diabetic LDL receptor-deficient mice. Diabetes 55, 2180-2191 (2006). https://doi.org/10.2337/db05-1188
  32. Zeng, Q., McCauley, L.K., and Wang, C.Y., Hepatocyte growth factor inhibits anoikis by induction of activator protein 1-dependent cyclooxygenase-2. J. Biol. Chem. 277, 50137-50142 (2002). https://doi.org/10.1074/jbc.M208952200