Experimental Study on Soot Formation in Opposed-Flow Ethylene Diffusion Flames by Mixing DME as an Alternative Fuel

대체 연료인 DME 혼합에 의한 대향류 에틸렌 확산화염내 매연 생성에 대한 실험적 연구

  • Yoon, Doo-Ho (Busan Campus of Korea Polytechnic. VII) ;
  • Yoon, Seok-Hun (Division of Marine Engineering System, Korea Maritime University) ;
  • Choi, Jae-Hyuk (Division of Marine Engineering System, Korea Maritime University)
  • 윤두호 (한국폴리텍대학 VII 부산캠퍼스) ;
  • 윤석훈 (한국해양대학교 기관시스템공학부) ;
  • 최재혁 (한국해양대학교 기관시스템공학부)
  • Received : 2010.06.25
  • Accepted : 2010.09.24
  • Published : 2010.09.30

Abstract

DME(Di-Methyl Ehter, $CH_3OCH$) is currently attracting worldwide attention due to its environmentally friendly characteristics. Until now it was researched as a major alternative fuel of diesel automobile because it is a clean fuel producing low soot. Therefore, in this study, in order to investigate the effect of DME mixing on number density and size of soot particle, DME has been mixed in opposed-flow ethylene diffusion flame with the mixture ratios 5%, 14% and 30%. A laser extinction/scattering technique has been adopted to measure the volume fraction, number density, and size of soot particles. The experimental results showed that the soot concentration of mixture flames with the mixture ratios 5% and 14% produces soot more, even though that of 30% was decreased. This means that even though DME has been known to be a clean fuel for soot formation, the mixing of DME in diffusion flame of ethylene, where acetylene maintains high concentration in soot formation regions, could produce enhanced production of soot.

DME는 환경 친화적인 특성으로 인해 현재 전 세계적으로 주목을 받고 있다. 지금까지 DME는 매연을 적게 생산하는 청정 에너지라는 특성으로 인해 디젤 자동차의 주요 대체 에너지로서 연구되어 왔다. 이에 본 연구에서는 에틸렌 대향류 확산화염에 DME를 5%, 14% 및 30% 혼합했을 때, DME의 혼합 비율에 따른 매연의 수밀도 및 크기에 대한 영향을 조사하였다. 레이저 투과법 및 산란법을 이용해 수밀도 및 크기를 측정하였다. 그 결과 DME를 30% 혼합한 경우에는 매연이 감소한 반면, 5%와 14%의 혼합 비율에서는 매연이 증가하는 경향을 나타내었다. 이 결과는 DME가 매연 생성이 적은 청정 연료로 알려진 것과는 달리 에틸렌 확산화염 내에서는 DME의 혼합에 따라 매연 생성이 증가될 수 있다는 것을 의미한다.

Keywords

References

  1. 정석호, 한재원, 정종수, 이원남, 고동섭, 김경수, 이기형, 강경태 (2001), 레이저응용연소계측, 문운당, pp. 134-139.
  2. 최재혁, 후지타 오사무(2005), 미소중력환경을 이용한 벽면근방 확산화염 내 매연부착거동의 원위치 관찰, Vol. 29, No. 1, pp. 907-914.
  3. Bohren, C. F., and D. R. Huffman(1983), Absorption and Scattering of Light by Small Particles, John Willey&Sons, New York, p. 541.
  4. Choi, J. H(2009), Experimental Study on Characteristics of Synergitic Effect of Fuel Mixing on Number Density and Size of Soot of Ethylene-base Counterflow Diffusion Flames by Laser Techniques, J. Korean Society of Marine Eng .. , Vol. 33, pp. 378-386. https://doi.org/10.5916/jkosme.2009.33.3.378
  5. D' Anna, A, A. Violi and A D' Alessio(2000), Modeling the Rich Combustion of Aliphatic Hydrocarbons, Combust. Flame, Vol. 121, pp. 418-429. https://doi.org/10.1016/S0010-2180(99)00163-7
  6. Dobbins, R. A, R. J. Santoro and H. G. Semerjian(1984), Interpretation of Optical Measurement of Soot in Flames, Prog. Astronaut. Aeronaut., Vol. 92, pp. 208-237.
  7. Gaydon, A. G. and H. G. Wolfhard(1970), Flames Their Structure Radiation and Temperature, Chapmann & Hall, London, p. 175.
  8. Glassman, I.(1988), Soot Formation in Combustion Processes, Combust. Inst. Vol. 22, pp. 295-311.
  9. Frenklach, M, D. W. Clary, C. William, J. R. Gardiner and E. S. Stephen(1984), Detailed Kinetic Modeling of Soot Formation in Shock-Tube Pyrolysis of Acetylene, 20th Proc. Combust. Inst., pp. 887-901.
  10. Kang, K. T., J. Y. Hwang, S. H. Chung and W. Lee(1997), Soot Zone Structure and Sooting Limit in Diffusion Flames: Comparison of Counterflow and Co-flow Flames, Combust. Flame, Vol. 109, pp. 266-281. https://doi.org/10.1016/S0010-2180(96)00163-0
  11. McEnally, C. S. and L. D. Pfefferle(2007), The Effects of Dimethyl Ether and Ethanol on Benzene and Soot Formation in Ethylene Nonpremixed Flames, Proc. Combust. Inst., Vol. 31, pp. 603-610.
  12. Miller, J. A.(1996), Theory and Modeling in Combustion Chemistry, 26th Proc. Combust. Inst., pp. 461-480.
  13. Yoon, S. S., S. M Lee and S. H Chung (2005), Effect of Mixing Methane, Ethane, Propane, and Propene on the Synergistic Effect of PAH and Soot Formation in Ethylene-base Counterflow Diffusion Flames, Proc. Combust Inst., Vol. 30, pp. 1417-1424. https://doi.org/10.1016/j.proci.2004.08.038
  14. Yoon, S. S.(2005), Role of Odd Carbon Chemistry on Soot Formation in Ethylene-base Diffusion Flames with Fuel Mixing, Ph.D. Thesis, pp. 44-55.