Trend Analysis of Affective Computing Technology for Diagnosis and Therapy of Autistic Spectrum Disorder

자폐스펙트럼장애 진단 및 치료를 위한 감성 컴퓨팅 기술 동향 분석

  • Yoon, Hyun-Joong (Faculty of Mechanical and Automotive Engineering, Catholic University of Daegu) ;
  • Chung, Seong-Youb (Department of Mechanical Engineering, Chungju National University)
  • 윤현중 (대구가톨릭대학교 공과대학 기계자동차공학부 메카트로닉스) ;
  • 정성엽 (충주대학교 공과대학 기계공학과)
  • Received : 2010.03.22
  • Accepted : 2010.06.30
  • Published : 2010.09.30

Abstract

It is known that as many as 1 in 91 children are diagnosed with an autistic spectrum disorder, and the incidence rate of the autistic spectrum disorder is much higher than that of cancer in Korea. It is necessary to develop a novel technology to sense their emotional status and give proper psychological diagnosis and therapy, since the children with autistic spectrum disorder usually do not express their own emotional status. This article presents the state-of-the-arts on the affective computing technologies that include recognition of emotional status through bio-sensing and virtual affective agent modeling, and then proposes a novel system architecture for diagnosis and therapy of autistic spectrum disorder. The diagnosis and therapy system of autistic spectrum disorder is composed of bio-sensing module, virtual environment module with affective agents, and haptic interface module. The architecture proposed in this paper will enhance the objectivity to diagnose autism spectrum disorders, and enable continuous treatment in daily life.

자폐스펙트럼장애는 91명당 1명이 문제를 보인다고 보고되었으며 이는 우리나라 암 발생률보다도 높은 수준이지만, 국내에서는 제대로 된 진단 및 치료가 이루어지고 있지 않아 사회적으로 심각한 복지 사각지대에 있다. 자폐스펙트럼장애 아동의 경우 자신의 정서 상태를 제대로 표현하지 못하여 기존의 치료 및 교육 방법에 제약이 많기 때문에, 장애 아동의 정서를 실시간으로 인지하여 활용할 수 있는 새로운 개념의 치료 시스템의 개발이 요구된다. 본 논문에서는 생체신호 감지를 통한 정서 상태 인지 기술 및 가상 감성 에이전트(agent) 모델링 기술을 포함한 감성 컴퓨팅 기술에 대하여 기술 동향 분석 결과를 제시하고, 새로운 자폐스펙 트럼장애 진단 및 치료를 위한 시스템 구성방식을 제안한다. 제안된 시스템은 뇌파 등의 생체신호로 부터 자폐아동의 정서 상태를 인지하기 위한 생체신호 감지 모듈, 가상현실 환경에서 자폐아동이 감성 에이전트와 사회적 상호작용을 하면서 다양한 진단 및 치료 시나리오를 수행하기 위한 가상 감성 에이전트 환경 모듈, 역감 교류(haptic interface)장치를 이용하여 자폐아동의 행동 입력이 가능하게 하고, 힘 반력을 자폐아동에게 전달해 주기 위한 역감 교류 모듈로 구성된다. 본 논문에서 제안한 시스템을 통해 자폐스펙트럼장애를 객관적으로 진단할 수 있으며, 생활 속에서 지속적인 치료를 가능하게 할 수 있을 것으로 기대된다.

Keywords

References

  1. 국립암센터 (2010). http://www.ncc.re.kr/
  2. 보건복지가족부 정책통계포털 (2009). http://stat.mw.go.kr/
  3. 한국전자통신연구원 (2007). ETRI, 감성로봇 코비, 래비 첫 개발 http://www.etri.re.kr/bbs/view.etri? b_board_id= ETRI06&b_idx=2247
  4. Arnold, M. B. & Gasson, S. J. (1954). Feelings and emotions as dynamic factors in personality integration. In M. B. Arnold (Ed.), The Human Person: An Approach to an Integral Theory of Personality. New York: Ronald Press.
  5. Aurora Project (2010). http://www.aurora-project. com/
  6. Bartlett, M. S., Littlewort, G., Fasel, I., & Movellan, J. R. (2003). Real time face detection and facial expression recognition: development and applications to HCI. Proc. CVPR Workshop on Computer Vision and Pattern Recognition for Human-Computer Interaction, 6-11.
  7. Benedek, J. & Hazlett, R. L. (2005). Incorporating facial EMG emotion measures as feedback in the software design process, Conference on Human Factors in Computing Systems, 2-7.
  8. Bos, D. O. (2006). EEG-based emotion recognition, [Online]. Available: http://hmi.ewi.utwente.nl/ verslagen/ capita-selecta/CS-Oude_Bos-Danny. pdf.
  9. Broek, E. L., Lisy, V. Westerink, J., Schut, M. H., & Tuinenbreijer, K. (2009). Biosignals as an advanced man-machine interface, International joint conference on biomedical engineering systems and technologies, 15-24.
  10. Center for the Study of Emotion and Attention. (1999). International affective picture system (IAPS): Technical manual and affective rating. NIMH-Center for the Study of Emotion and Attention, University of Florida, Gainesville, FL.
  11. Dautenhahn, K. (1998). The Art of designing socially intelligent agents: Science, fiction and the human in the loop. Applied Artificial Intelligence Journal, Special Issue on Socially Intelligent Agents, 12(7-8), 573-619.
  12. Dawson, M. E., Schell, A. M., & Braaten, J. R. (1985). Diagnostic utility of autonomic measures for major depressive disorders, Psychiatry Research, 15, 261- 270.
  13. El-Nasr, M. S., Yen, J., & Ioerger, T. R. (2000). FLAME - Fuzzy logic adaptive model of emotions. Autonomous Agents and Multi-Agent Systems, 3(3), 219-257.
  14. Elliot, C. (1992). The Affective Reasoner: A Process Model of Emotions in a Multi-Agent System. Institute for the Learning Sciences, Evanston, IL: Northwestern University, Ph. D. Dissertation.
  15. Frijda, N. H. & Swagerman, J. (1987). Can computers feel? Theory and design of an emotional system. Cognition and Emotion, 1(3), 235-257.
  16. Fusar-Poli, P., Landi, P., & O'Connor, C. (2009). Neurophysiological response to emotional faces with increasing intensity of fear: A skin conductance response study, Journal of Clinical Neuroscience, 16(7), 981-982
  17. Gratch, J. & Marsella, S. (2004) A domain-independent framework for modeling emotion. Journal of Cognitive Systems Research, 5(4), 269-306.
  18. ISAAC Foundation (2010). Facts about autism, http://theisaacfoundation.org/facts-about-autism/
  19. Jong, P. J., Peters, M., & Vanderhallen, I. (2002). Disgust and disgust sensitivity in spider phobia: facial EMG in response to spider and oral disgust imagery, Journal of Anxiety Disorders, 16, 477-493.
  20. Kulic, D. & Croft, E. (2005). Anxiety detection during human-robot interaction, IEEE International Conference on Intelligent Robots and Systems, 616-621.
  21. LeDoux, L. (1996). The Emotional Brain. New York: Simon & Schuster.
  22. Madsen, M., el Kaliouby, R., Goodwin, M., & Picard, R. W. (2008). Technology for just-in-time in-situ learning of facial affect for persons diagnosed with an autism spectrum disorder. in Proceedings of the 10th ACM Conference on Computers and Accessibility (ASSETS), Oct. 13-15, 2008, Halifax, Canada.
  23. Maes, P. (1995). Artificial life meets entertainment: Lifelike autonomous agents. Communications of the ACM Special Issue on Novel Applications of AI, 38(11), 108-114.
  24. Maria, K. A. & Zitar, R. A. (2008). Emotional agent modeling, in simulation and modeling: Current technologies and applications. New York: IGI Publishing.
  25. Marsella, S. C. & Gratch, J., (2009). EMA: A Process model of appraisal dynamics. Cognitive Systems Research, 10, 70-90.
  26. Metallinou, A., Lee, S., & Narayanan, S. (2008). Audiovisual emotion recognition using gaussian mixture models for face and voice, IEEE International Symposium on Multimedia, 250-257.
  27. Muller, M. M., Keil, A., Cruber, T., & Elbert, T. (1999). Processing of affective pictures modulates righthemispheric gamma band EEG activity, Clinical Neurophysiology, 110, 1913- 1920.
  28. Nakanishi R. & Imai-Matsumura, K. (2008). Facial skin temperature decreases in infants with joyful expression, Infant Behavior and Development, 31(1), 137-144.
  29. Nwe, T. L., Foo S. W., & Silva, L. C. (2003). Speech emotion recognition using hidden Markov models, Speech Communication, 41(4), 603-623.
  30. Oathes, D. J., Ray, W. J., Yamasaki, A. S., Borkovec, T. D., Castonguay, L. G. Newman, M. G., & Nitschke, J. (2008). Worry, generalized anxiety disorder, and emotion: evidence from the EEG gamma band, Biological Psychology, 79(2), 165-170.
  31. Oatley, K. & Jenkins, J. M. (1996). Understanding Emotions. Backwell.
  32. Ortony, A., Clore, G., & Collins, A. (1988). The Cognitive Structure of Emotions. Cambridge: Cambridge University Press.
  33. Paro Therapeutic Robot (2010). http://probo.vub.ac. be/
  34. Picard, R. W. & Goodwin, M. (2008). Innovative technology: The future of personalized autism research and treatment, Autism Advocate, First Edition, 50(1), 32-39.
  35. Picard, R. W., Vyzas, E., & Healey, J. (2001). Toward machine emotional intelligence: analysis of affective physiological state, IEEE Transactions Pattern Analysis and Machine Intelligence, 23(10), 1175-1191.
  36. Puri, C., Olson, L., Pavlidis, L., Levine, J., & Starren, J. (2005). StressCam: non-contact measurement of users' emotional states through thermal imaging, Conference on Human Factors in Computing Systems, 1725-1728.
  37. Probo Project (2010). http://probo.vub.ac.be/
  38. Rainville, P., Bechara, A., Naqvi, N., & Damasio, A. R. (2006). Basic emotions are associated with distinct patterns of cardiorespiratory activity, International Journal of Psychophysiology, 61(1), 5-18.
  39. Ray, W. J. & Cole, H. W. (1985). EEG alpha activity reflects attentional demands, and beta activity reflects emotional and cognitive processes. Science, 228(4700), 750-752.
  40. Reilly, W. S. (1996). Believable Social and Emotional Agents. Ph. D. Dissertation, School of Computer Science, Carnegie Mellon University.
  41. Rizzo, A. A., Klimchuk, D., Mitura, R., Bowerly, T., Buckwalter, G. B., Kerns, K., Randall, K., Adams, R., Finn, P., Tarnanas, I., Sirbu, C., Ollendick, T. H., & Yeh, S. C. (2005). A virtual reality scenario for all seasons: The virtual classroom, Proceedings of the 11th International Conference on Human Computer Interaction, Las Vegas, USA, July 22-27.
  42. Roseman, I. J., Jose, P. E., & Spindel, M. S. (1990). Appraisals of emotion-eliciting events: Testing a theory of discrete emotions. Journal of Personality and Social Psychology, 59(5), 899-915.
  43. Schaaff, K. & Schultz, T. (2009). Towards emotion recognition from electroencephalo- graphic signals, Proceedings of International Conference on Affective Computing and Intelligent Interaction, Amsterdam, Netherlands.
  44. Scherer, K. (1987). Toward a dynamic theory of emotion: The component process model of affective states. Geneva Studies in Emotion and Communication, 1(1), 1-98.
  45. Shibata, T., Inoue, K., & Irie, R. (1996). Emotional robot for intelligent system - Artificial emotional creature project. IEEE International Workshop on Robot and Human Communication, Tokyo, Japan, 466-471.
  46. Takahashi, K. (2004). Remarks on emotion recognition from bio-potential signals, IEEE international conference on industrial technology, 3, 1138-1143.
  47. Virtual Reality Medical Center (2010). http://www. vrphobia.com/
  48. Ward, N. G. & Doerr, H. O. (1986). Skin conductance: a potentially sensitive and specific marker for depression, Journal of Nervous Mental Disorder, 174, 553-559.