DOI QR코드

DOI QR Code

과학 교수-학습 프로그램의 평가를 위한 두뇌기반 분석틀의 개발

The Development of the Brain-based Analysis Framework for the Evaluation of Teaching-Learning Program in Science

  • 투고 : 2010.04.27
  • 심사 : 2010.07.02
  • 발행 : 2010.08.31

초록

이 연구의 목적은 과학 교수-학습프로그램을 평가하기 위한 두뇌기반 분석틀을 개발하는 것이다. 분석틀의 개발을 위해, 이 연구는 과학 교수-학습과 관련된 선행연구들로부터 교수-학습 프로그램의 분석항목을 3가지로 범주화 하였다: 인지, 동기, 감성. 첫 번째로, 각 항목에 관련된 두뇌활성 영역을 파악하기위하여 과학수업과 관련된 두뇌 기능에 대한 93편의 뇌과학 문헌들을 분석하였다. 두 번째로, 두뇌의 해부학적 영역별로 범주화된 연구결과를 바탕으로 과학 교수-학습프로그램 분석을 위한 분석틀을 제작하였다. 분석틀의 제작은 R & D 방법을 따랐다. 그 결과, 두뇌활성 결과들은 대뇌 피질, 보상계, 변연계의 세 영역으로 범주화되어 나타났다. 이를 바탕으로 개발된 두뇌기반 과학 교수-학습 프로그램 분석틀인 'CORE Brain Map'은 양측 배외측전전두피질, 양측 복외측 전전두피질, 양측 안와전두피질, 전대상이랑, 양측 두정피질, 양측 측두피질, 양측 후두피질, 양측 해마, 양측 편도체, 양측 측좌핵, 양측 선조체 그리고 중뇌영역으로 구성된다. 두뇌기반 과학 교수-학습프로그램 분석틀은 다양한 과학 교수-학습프로그램의 분석 및 진단에 활용 가능할 것으로 전망된다.

The purpose of this study was to develop a brain-based analysis framework for evaluating teachinglearning program in science. To develop the framework, this study categorized educational constructs of the teachinglearning programs into one of three teaching-learning factors: cognition, motive, and emotion, using previous studies on science program. Ninety-three articles on the brain functions associated with science program were analyzed to extract brain activation regions related to the three educational constructs. After delineating the brain activation regions, we designed the brain function map, "the CORE Brain Map." Based on this brain map, we developed a brain-based analysis framework for evaluating science teaching-learning program using R & D processes. This framework consists of the brain regions, the bilateral dorsolateral prefrontal cortex, the bilateral ventrolateral prefrontal cortex, the bilateral orbitofrontal cortex, the anterior cingulate gyrus, the bilateral parietal cortex, the bilateral temporal cortex, the bilateral occipital cortex, the bilateral hippocampus, the bilateral amygdala, the bilateral nucleus accumbens, the bilateral striatum and the midbrain regions. These brain regions are associated with the aforementioned three educational factors; cognition, motivation, and emotion. The framework could be applied to the analysis and diagnosis of various teaching and learning programs in science.

키워드

참고문헌

  1. 권석원, 권용주(2009). 생명현상 관찰에서 나타나는 인과적 의문 생성의 ERF 특성: MEG 연구. 과학교육연구지, 33(2), 336-345.
  2. 권용주, 신동훈, 한혜영, 박윤복(2004). 과학적 관찰과 규칙성 발견 활동에서 나타나는 감성 단어 유형과 과학지식 생성력과의 관계. 한국과학교육학회지, 24(6), 1106-1117.
  3. 권용주, 이준기 (2010). 분류 지식의 생성과 이해 형태 학습을 통한 학생들의 두뇌활성 변화. 한국과학교육학회지, 30(4), 487-497.
  4. 권용주, 이준기(2007). 생물학자와 고등학생의 생물학 가설 생성에서 나타나는 두뇌 활성: fMRI 연구. 한국생물교육학회지, 35(4), 601-610.
  5. 권용주, 이준기, 신동훈, 이효녕(2006). 생명현상의 관찰과 명화 감상에서 나타나는 생물교육학자들의 두뇌활성: fMRI 연구. 중등교육연구, 54(3), 475-500.
  6. 권용주, 이준기, 신동훈, 정진수(2007a). 기공과 새우 과제에서 초.중등 교사들이 생성한 관찰의 분석 및 관찰력 지수의 개발. 중등교육연구, 55(3), 83-112.
  7. 권용주, 정진수, 강민정, 박윤복(2005). 생명현상에 대한 초. 중등 과학교사의 관찰에서 나타난 과학적 관찰의 유형. 한국과학교육학회지, 25(3), 431-439.
  8. 권용주, 정진수, 박윤복, 강민정 (2003). 선언적 과학 지식의 생성과정에 대한 과학철학적 연구 - 귀납적, 귀추적, 연역적 과정을 중심으로 - . 한국과학교육학회지, 23(3), 215-228.
  9. 권용주, 정진수, 이준기, 신동훈, 양일호(2007b). 생명현상에 대한 가설검증방법의 고안과정에서 나타나는 초등 예비 교사의 두뇌 활성 - fMRI 연구. 한국 생물교육학회지, 35(2), 212-224.
  10. 권용주, 정진수, 이준기, 양일호(2007c). 생명현상에 관한 과학적 의문 생성 과정에서 나타나는 생물 학자의 두뇌 활성 양상. 한국과학교육학회지, 27(1), 84-92.
  11. 권용주, 정진수, 이준기, 이일선 (2008). 과학적 탐구사고력 향상을 위한 과학지식의 생성과 평가. 서울: 메이드.
  12. 김동렬, 손연아, 문두호 (2007). 동기 유발 전략을 적용한 하이퍼미디어 학습 프로그램이 학생들의 인지 수준에 따른 생물 학업 성취도와 학습 동기에 미치는 효과. 한국생물교육학회지, 35(1), 38-51.
  13. 김성일 (2006). 뇌기반 학습과학: 뇌과학이 교육 에 대해 말해주는 것은 무엇인가? 인지과학, 17(4), 375-398.
  14. 신동훈 (2006). 생물학 가설생성에서 나타나는 과학적 감성의 생성 과정 설명을 위한 신경 인지적 모형 개발. 한국생물교육학회지, 34(2), 232-245.
  15. 이준기, 권용주 (2008). 생명현상에 대한 과학적 가설생성과 이해과정에서 나타나는 감성의 유형. 중등교육연구, 56(3), 1-36.
  16. 이준기, 권용주, 정진수(2006). 생명 현상에 대한 가설 생성에서 나타나는 과학교사의 두뇌 활성-fMRI 연구. 한국생물교육학회지, 34(4), 453-464.
  17. 이준기, 변정호, 권용주(2009). 생명현상에 대한 과학적 관찰에서 나타나는 과학 교사들의 두뇌 활성 및 기능적 연결. 한국과학교육학회지, 29(6), 731-741.
  18. 이준기, 양일호, 권용주(2008). 생명현상에 관한 생물학자들의 경향성 지식 생성과정에서 나타나는 두뇌 활성 양상. 한국생물교육학회지, 36(2), 178-188.
  19. 이준기, 이일선, 권용주(2009). 생명현상에 관한 가설평가과정에서 나타나는 두뇌활성양상 및 기능적 연결 네트워크. 생물교육학회지, 309-320.
  20. 이혜정, 이준기, 권용주(2008). 생명 현상의 공통성 지식 생성과 적용에서 나타나는 예비 교사의 뇌 활성화 양상: fMRI 연구. 한국생물교육학회지, 36(3), 251-265.
  21. 임채성(2005). 뇌 기능에 기초한 과학 교수학습: 뇌기능과 학교 과학의 정의적.심체적.인지적 영역의 연계적 통합 모형. 초등과학교육, 24(1), 86-101.
  22. 임채성(2009). 뇌기반 진화적 과학 교수학습 모형의 개발. 한국과학교육학회지, 29(8), 990-1010.
  23. 정진수 (2007). 초.중등 학생들을 위한 과학적 감성 측정 도구 개발과 생물학 가설 생성에서 나타나는 감성 조사. 한국생물교육학회지, 35(1), 11-26.
  24. 정진수, 마이클 매튜스, 신동훈 (2007). 과학적 가설 생성의 인지적 과정과 감성 요소의 인과적 상호 작용에 관한 모형 개발. 한국생물교육학회지, 35(4), 663-677.
  25. 정진수, 윤성규(2008). Caminalcules를 이용한 귀납적 탐구 과제 수행에서 나타난 뇌파의 상대 파워 스펙트럼 분석. 한국생물교육학회지, 36(4), 456-467.
  26. 정진수, 윤성규, 김상은(2009). 세타 및 알파 상대 파워스펙트럼 분석을 통한 생물학 용어 유의미 기억의 특성 분석. 한국생물교육학회지, 37(4), 495-503.
  27. AAAS (American Association for the Advancement of Science) (1989). Science for all Americans. A project 2061 report on literacy goals in sciences, mathematics and technology: Washington, D. C. AAAS.
  28. Ansari, D., & Coch, D. (2006). Bridge over troubled waters: education and cognitive neuroscience. Trends in Cognitive Sciences, 10(4), 146-151. https://doi.org/10.1016/j.tics.2006.02.007
  29. Aron, A. R., Shohamy, D., Clark, J., Myers, C., Gluck, M. A., & Poldrack, R. A. (2004). Human midbrain sensitivity to cognitive feedback and uncertainty during classification learning. Journal of Neurophysiology, 92, 1144-1152. https://doi.org/10.1152/jn.01209.2003
  30. Bar, M. (2007). The procative brain: using analogies and associations to generate. Trends in Cognitive Sciences, 11(7), 280-289. https://doi.org/10.1016/j.tics.2007.05.005
  31. Bartels, A., & Zeki, S. (2004). The neural correlates of maternal and romantic love. NeuroImage, 21, 1155-1166. https://doi.org/10.1016/j.neuroimage.2003.11.003
  32. Berns, G. S., McClure, S. M., Pagnoni, G., & Montague, P. R. (2001). Predictability modulates human brain response to reward. The Journal of Neuroscience, 21(8), 2793-2798.
  33. Blackwood, N., Ffytche, D., Simmons, A., Bentall, R., Murray, R., & Howard, R. (2004). The cerebellum and decision making under uncertainty. Cognitive Brain Research, 20, 46-53. https://doi.org/10.1016/j.cogbrainres.2003.12.009
  34. Byeon, J. H., Lee, J. K., Kwon, Y. J. (2009). Brain activation pattern and functional connectivity network during classification on the living organisms. Journal of Korean Association for Research in Science Education, 29(7), 751-758.
  35. Cabeza, R., & Nyberg, L. (2000). Imaging cognition II: An empirical review of 275 PET and fMRI studies. Journal of Cognitive Neuroscience, 12(1), 1-47. https://doi.org/10.1162/08989290051137585
  36. Camara, E., Rodriguez-Fornells, A., Ye, Z., & M nte, T. F. (2009). Reward networks in the brain as captured by connectivity measures. Frontiers in neuroscience, 3(3), 350-362. https://doi.org/10.3389/neuro.01.034.2009
  37. Canessa, N., Gorini, A., Cappa, S., F., Piattelli-Palmarini, M., Danna, M., Fazio, F., & Perani. (2005). The effect of social content on deductive reasoning: An fMRI study. 26, 30-43.
  38. Castriota-Scanderbeg, A., Hagberg, G. E., Cerasa, A., Committeri, G., Galati, G., Patria, F., Pitzalis, S., Caltagirone, C., & Frackowiak, R. (2005). The appreciation of wine by sommerliers: a functional magnetic resonance study of sensory integration. NeuroImage, 25, 570-578. https://doi.org/10.1016/j.neuroimage.2004.11.045
  39. Chao, L. L., & Martin, A. (2000). Representation of manipulable man-male objects in the dorsal stream. NeuroImage, 12, 474-484.
  40. Cheng, D. T., Knight, K. C., & Smith, C. N. (2003). Funtional MRI of human amygdala activity during pavlovian fear conditioning: Simulus processing versus response expression. Behavioral neuroscience, 117(1), 3-10.
  41. Choi, S. H., Na, D. L., Kang, E., Lee, K. M., Lee, S. W., & Na, D. G. (2001). Functional magnetic resonance imaging during pantomiming tool-use gesture. Experimental Brain Research, 139, 311-317. https://doi.org/10.1007/s002210100777
  42. Cohen, M. X., Heller, A. S., & Ranganath, C. (2005). Functional connectivity with anterior cingulate and orbitofrontal cortices during decision-making. Cognitive Brain Research, 23, 61-70. https://doi.org/10.1016/j.cogbrainres.2005.01.010
  43. Cohen, M. X., Schoene-Bake, J., Elger, C. E., & Weber, B. (2009). Connectivity-based segregation of the human striatum predicts personality characteristics. Nature neuroscience, 12, 32-34. https://doi.org/10.1038/nn.2228
  44. Connell, J. D. (2005). Brain-based strategies to reach every learner. [정종진, 임청환, 성용구 공 역 (2008). 뇌기반 교수-학습전략. 학지사.]
  45. Damasio, A. R. (1994). Descartes's error: Emotion, reason, and the human brain. William Morris Agency, Inc., NewYork.
  46. Daselaar, S. M., Veltman, D. J., Romnouts, S. A. R. B., Raaijmakers, J. G. W., Lazeron, R. H. C., & Jonker, C. (2002). Medial temporal lobe activity during semantic classification using a flexible fMRI design. Behavioural Brain Research, 136, 399-404. https://doi.org/10.1016/S0166-4328(02)00187-0
  47. Davis, A (2004). The credentials of brainbased learning. Journal of Philosophy of Education, 38, 21-25. https://doi.org/10.1111/j.0309-8249.2004.00361.x
  48. Davis, L. (1992). Instrument review: Getting the most from your panel of experts. Applied Nursing Research, 5(4), 194-197. https://doi.org/10.1016/S0897-1897(05)80008-4
  49. de Marco, G., de Bonis, M., Vrignaud, P., Henry-Feugeas, M. C., & Peretti, I. (2006). Changes in effective connectivity during incidental and intentional perception of fearful faces. NeuroImage, 30, 1030-1037. https://doi.org/10.1016/j.neuroimage.2005.10.001
  50. Delgado, M. R., Gillis, M. M., & Phelps, E. A. (2008). Regulating the expectation of reward via cognitive strategies. Nature neuroscience, 11(8), 880-881. https://doi.org/10.1038/nn.2141
  51. Delgado, M. R., Miller, M. M., Inati, S., & Phelps, E. A. (2005). An fMRI study of rewardrelated probability learning. NeuroImage, 24, 862-873. https://doi.org/10.1016/j.neuroimage.2004.10.002
  52. Delgado, M. R., Nystorm, L. E., Fissell, C., Noll, D. C., & Fiez, J. A. (2000). Tracking the hemodynamic responses to reward and punishment in striatum. Journal of Neurophysiology, 84, 3072-3077.
  53. Doeller, C. F., Optiz, B., Krick, C. M., Mecklinger, A., & Reith, W. (2006). Differential hippocampal and prefrontal-striatal contributions to instance-based learning. NeuroImage, 31, 1802-1816. https://doi.org/10.1016/j.neuroimage.2006.02.006
  54. Elliot, R., & Dolan, R. J. (1998). Activation of different anterior cingulate foci in association with hypothesis testing and response selection. NeuroImage, 8, 17-29. https://doi.org/10.1006/nimg.1998.0344
  55. Elliott, R., Rees, G., & Dolan, R. J. (1999). Ventromedial prefrontal cortex mediates guessing. Neuropsychologia, 37, 403-411. https://doi.org/10.1016/S0028-3932(98)00107-9
  56. Fareri, d. S., Martin, L. N., & Delgado, M. R. (2008). Reward-related processing in the human brain: Developmental considerations. Development and Psychopathology, 20, 1191-1211. https://doi.org/10.1017/S0954579408000576
  57. Filoteo, J. V., Maddox, W. T., Simmons, A. N., Ing, A. D., Cagigas, X. E., Matthews, S., & Paulus, M. P. NeuroReport, 16(2), 111-115. https://doi.org/10.1097/00001756-200502080-00007
  58. Flagerty, A. W. (2005). Frontotemporal and dopaminergic control of idea generation and creative drive. The journal of comparative neurology, 493, 147-153. https://doi.org/10.1002/cne.20768
  59. Fugelsang, J. A., & Dunbar, K. N. (2005). Brain-based mechanisms underlying complex causal thinking. Neuropsychology, 43, 1204-1213. https://doi.org/10.1016/j.neuropsychologia.2004.10.012
  60. Fugelsang, J. A., Roser, M. E., Corballis, P. M., Gazzaniga, M. S., & Dunbar, K. N. (2005). Brain mechanisms underlying perceptual causality. Cognitive Brain Research, 24, 41-47. https://doi.org/10.1016/j.cogbrainres.2004.12.001
  61. Fujii, T., Suzuki, M., Okuda, J., Ohtake, H., Tanji, K., Yamaguchi, K., Itoh, M., & Yamadori, A. (2004). Neural correlates of context memory with real-world events. NeuroImage, 21, 1596-1603. https://doi.org/10.1016/j.neuroimage.2004.01.005
  62. Ganis, G., Thompson, W. L., & Kosslyn, S. M. (2004). Brain areas underlying visual mental imagery and visual perception: an fMRI study. Cognitive Brain Research, 20, 226-241. https://doi.org/10.1016/j.cogbrainres.2004.02.012
  63. Goel, V., & Dolan, R. J. (2003). Explaining modulation of reasoning by belief. Cognition, 87, B11-B22. https://doi.org/10.1016/S0010-0277(02)00185-3
  64. Goel, V., & Dolan, R. J. (2003). Reciprocal neural response within lateral and ventral medial prefrontal cortex during and cold reasoning. NeuroImage, 20, 2314-2321. https://doi.org/10.1016/j.neuroimage.2003.07.027
  65. Green, A. E., Fugelsang, J. A., & Kraemer, D. J. M. (2006). Frontopolar cortex mediates abstract integration in analogy. Brain Research, 1096, 125-137. https://doi.org/10.1016/j.brainres.2006.04.024
  66. Han, S., Jiang, Y., & Mao, L. (2006). Right hemisphere dominance in perceiving coherence of visual events. Neuroscience Letters, 398, 18-21. https://doi.org/10.1016/j.neulet.2005.12.069
  67. H..ausel, H. (2008). Brain View. Warum Kunden kaufen [배진아 옮김, 이인식 감수(2008). 뇌, 욕망의 비밀을 풀다. 흐름출판.]
  68. James, T. W., Servos, P., Kilgour, A. R., Huh, E., & Lederman, S. (2006). The influence of familiarity on brain activation during haptic exploration of 3-D facemasks. Neuroscience Letters, 397, 269-273. https://doi.org/10.1016/j.neulet.2005.12.052
  69. Jensen, E. (2000). Brain-based learning 2nd Ed. Turning Point Publishing.
  70. Johnson, M. R., Mitchell, K. J., Raye, C. L., D'Esposito, M., & Johnson, M. K. (2007). A brief thought can modulate activity in extrastriate visual areas: Top-down effects of refreshing just-seen visual stimuli. NeuroImage, 37, 290-299. https://doi.org/10.1016/j.neuroimage.2007.05.017
  71. Jung-Beeman, M., Bowden, E. M., Haberman, J., Frymiare, J. L., Arambel-Liu, S., Greenblatt, R., Reber, P., & Kounios, J. (2004). Neural activity when people solve verbal problems with insight. PLoS Biology, 2(4), 500-510.
  72. Knauff, M., Famgmeier, T., Ruff, C. C., & Sloutsky, V. (2006). FMRI-Evidence for a threestage- model of deductive reasoning. Journal of Cognitive Neuroscience, 18(3), 320-334. https://doi.org/10.1162/jocn.2006.18.3.320
  73. Knutson, B., Adams, C. M., Fong, G. W., & Hommer, D. (2001). Anticipation of increasing monetary reward selectively recruits nucleus accumbens. The Journal of Neuroscience, 21 RC159, 1-5.
  74. Koenig, P., Smmith, E. E., Glosser, G., DeVita, C., Moore, P., McMillam, C., Gee, J., & Grossman, M. (2005). The neural basis for novel semantic categorization. NeuroImage, 24, 369-383. https://doi.org/10.1016/j.neuroimage.2004.08.045
  75. Kuperberg, G. R., Lakshmanan, B. M., Caplan, D. N., & Holcomb, P. J. (2006). Making sense of discourse: An fMRI study of causal inferencing across sentences. NeuroImage, 33, 343-361. https://doi.org/10.1016/j.neuroimage.2006.06.001
  76. Kwon, Y. J., Lee, J. K., Shin, D. H., & Jeong, J. S. (2009). Changes in brain activation induced by the training of hypothesis generation skills: An fMRI study. Brain and Cognition, 69, 391-397. https://doi.org/10.1016/j.bandc.2008.08.032
  77. LeDoux, J. E. (1996). The emotional brain: the mysterious underpinning of emotional life. NY: Touchstone.
  78. Lee, I. S., Lee, J. K., Kwon, Y. J. (2009). Brain activation pattern and functional connectivity network during experimental design on the biological Phenomena. Journal of Korean Association for Research in Science Education, 29(3), 348-358.
  79. Lee, J. K. (2009). Dissociation of the brain activation network associated with hypothesis-generating and hypothesisunderstanding in biology learning: Evidence from an fMRI study. Unpublished Doctoral Dissertation. Cheongwon, Chungbuk: Korea National University of Education.
  80. Lee, J., Kwon, Y., & Jeong, J. (2008). Neural substrates during finding target objects and observing natural phenomena : An fMRI study. In Advances in Cognitive Neurodynamics, R. Wng, F. Gu & E. Shen Eds.). Dordrecht, The Netherlands: Springer.
  81. Leube, D. T., Erb, M., Grodd, W., Bartels, M., Kircher, T. T. J. (2001). Activation of right fronto-temporal cortex characterizes the 'living'category in semantic processing. Cognitive Brain Research, 12, 425-430. https://doi.org/10.1016/S0926-6410(01)00068-4
  82. Lisman, J. E., & Grace, A. A. (2005). The hippocampal-VTA loop: Controling the entry of information into long-term memory. Neuron, 46, 703-713. https://doi.org/10.1016/j.neuron.2005.05.002
  83. Little, D. M., Klein, R., Shobat, D. M., McClure, E. D., Thulborn, K. R. (2004). Changing patterns of brain activation during category learning revealed by functional MRI. Cognitive Brain Research, 22, 84-93. https://doi.org/10.1016/j.cogbrainres.2004.07.011
  84. Lotze, M., Heymans, U., Birbaumer, N., Veit, R., Erb, M., Flor, H., & Halsband, U. (2006). Differential cerebral activation during observation of expressive gestures and motor acts. Neuropsychologia, 44, 1787-1795. https://doi.org/10.1016/j.neuropsychologia.2006.03.016
  85. MacLean, P. D. (1978). A mind of three minds: Educating the triune brain. In J. Chall & A. Mirsky (Eds.), Education and the Brain. Chicago: Chicago University Press.
  86. MacLean, P. D. (1990). The triune brain in evolution. New York: Plenum Press.
  87. Mak, A. K. Y., Hu, Z., Zhang, J. X., Xiao, Z., & Lee, T. M. C. (2009). Neural correlates of regulation of positive and negative emotions: An fMRI study. Neuroscience Letters, 457, 101-106. https://doi.org/10.1016/j.neulet.2009.03.094
  88. Martin, A., Wiggs, C. L., Ungerleider, L. G., & Haxby, J. V. (1996). Neural correlates of category-specific knowledge. Nature, 379, 649-653. https://doi.org/10.1038/379649a0
  89. Mason, R. A., & Just, M. A. (2004). How the brain processes causal inferences in text. Psychological Science, 15(1), 1-7. https://doi.org/10.1111/j.0963-7214.2004.01501001.x
  90. Mazard, A., Laou, L., & Mellet, J. E. (2005). Neural impact of the semantic content of visual mental images and visual percepts. Cognitive Brain Research, 24, 423-435. https://doi.org/10.1016/j.cogbrainres.2005.02.018
  91. McClure, S. M., Berns, G., & Montague, P. R. (2003). Temporal prediction errors in a passive learning task activate human striatum. Neuron, 38, 339-346. https://doi.org/10.1016/S0896-6273(03)00154-5
  92. McClure, S. M., Li, J., Tomlin, D., Cypert, K. S., & Montague, L. M. (2004). Neural correlates of behavioral preference for culturally familiar drinks. Neuron, 44, 379-387. https://doi.org/10.1016/j.neuron.2004.09.019
  93. Medford, N., Phillips, M. L., Brierley, B., Brammer, M., Bullmore, E. T., & David, A. S. (2005). Emotional memory: Separating content and context. Psychiatry Research Neuroimaging, 138, 247-258. https://doi.org/10.1016/j.pscychresns.2004.10.004
  94. Mizuno, K., Tanaka, M., Ishii, A., Tanabe, H. C., Onoe, H., Sadato, N., & Watanabe, Y. (2008). The neural basis of academic achievement motivation. NeuroImage, 42, 369-378. https://doi.org/10.1016/j.neuroimage.2008.04.253
  95. Moll, J., de Oliveira-Souza, R., Passman, L. J., Cunha, F. C., Souza-Lima, F., & Andreiuolo, P. A. (2000). Functional MRI correlates of real and imagined tool-use pantomimes. Neurology, 54, 1331-1336. https://doi.org/10.1212/WNL.54.6.1331
  96. Naqvi, N., Shiv, B., & Beehara, A. (2006). The role of emotion in decision making - A cognitive neuroscience perspective. Current directions in psychological science, 15(5), 260-264. https://doi.org/10.1111/j.1467-8721.2006.00448.x
  97. Okuda, J., Fujii, T., Ohtake, H., Tsukiura, T., Tanji, K., Suzuki, K., Kawashima, R., Fukuda, H., Itoh, M., & Yamadori, A. (2003). Thinking of the future and past: The roles of the frontal pole and the medial temporal lobes. NeuroImage, 19, 1369-1380. https://doi.org/10.1016/S1053-8119(03)00179-4
  98. Pagnoni, G., Zink, C. F., Montague, P. R., & Berns, G. S. (2002). Activity in human ventral striatum locked to errors of reward prediction. Nature neuroscience, 5, 97-98. https://doi.org/10.1038/nn802
  99. Parris, B. A., Kuhn, G., Mizon, G. A., Benattayallah, A., & Hodgson, T. L. (2009). Imaging the impossible: An fMRI study of impossible causal relationships in magic tricks. NeuroImage, 45, 1033-1039. https://doi.org/10.1016/j.neuroimage.2008.12.036
  100. Paulus, M. P., Hozack, N., Zauscher, B., McDowell, J. E., Frank, L., Brown, G. G., & Braff, D. L. (2001). Prefrontal, parietal, and temporal cortex networks underlie decisionmaking in the presence of uncertainty. NeuroImage, 13, 91-100.
  101. Phan, K. L., Wager, T., Taylor, S. F., & Liberzon, I. (2001). Functional neuroanatomy of emotion: A meta-analysis of emotion activation studies in PET and fMRI. NeuroImage, 16, 331-348.
  102. Phelps, E. A. (2004). Human emotion and memory: interaction of the amygdala and hippocampal complex. Current opinion in Nneurobiology, 14, 198-202. https://doi.org/10.1016/j.conb.2004.03.015
  103. Posner, M. I., & Rothbart, M. K. (2005). Influencing brain networks: implications for education. Trends in Cognitive Science, 9(3), 99-103. https://doi.org/10.1016/j.tics.2005.01.007
  104. Qiu, J., Li, H., Yang, D., Luo, Y., Li, Y., Wu, Z., & Zhang, Q. (2008). The neural basis of insight problem solving: An event-related potential study. Brain and Cognition, 68, 100-106. https://doi.org/10.1016/j.bandc.2008.03.004
  105. Qiu, Jl, Li, H., Jou, J., Liu, J., Luo, Y., Feng, T., Wu, Z., & Zhang, Q. (2010). Neural correlates of the "Aha"experiences: Evidence from fMRI study of insight problem solving. CORTEX, 46, 397-403. https://doi.org/10.1016/j.cortex.2009.06.006
  106. Reeve, J. (2001). Understanding motivation and emotion. John Wiley & Sons.
  107. Reverberi, C., Cherubini, P., Rapisarda, A., Rigamonti, E., Caltagirone, C., Frackowiak, R. S. J., Macaluso, E., & Paulesu, E. (2007). Neural basis of generation of conclusions in elementary deduction. NeuroImage, 38, 752-762. https://doi.org/10.1016/j.neuroimage.2007.07.060
  108. Rodriguez-Moreno, D., & Hirsch, J. (2009). The dynamics of deductive reasoning: An fMRI investigation. Neuropsychologia, 47, 949-961. https://doi.org/10.1016/j.neuropsychologia.2008.08.030
  109. Rosenzweig, M. R., Breedlove, S. M., & Watson, N. V. (2005). Biological psychology: An introduction to behavioral and cognitive neuroscience, (4th ed.)., Sinauer associate, Inc.
  110. Satpute, A. B., Fenker, D. B., Walmann, M. R., Tabibnia, G., Holyoak, K. J., & Lieberman, M. D. (2005). An fMRI study of causal judgements. European Journal of Neuroscience, 22, 1233-1238. https://doi.org/10.1111/j.1460-9568.2005.04292.x
  111. Schienle, A., Sch..afer, A., Hermann, A., Walter, B., Stark, R., & Vaitl, D. (2006). fMRI responses to pictures of multilation and contamination. Neuroscience Letters, 393, 174-178. https://doi.org/10.1016/j.neulet.2005.09.072
  112. Silvia, P. (2006). Exploring the psychology of interest. Oxford University Press.
  113. Solso, R. L. (2001). Cognitive psychology, 6th Ed. New York: Allyn & Bacon.
  114. Sousa, D. A. (2001). How the brain learns. Thousand Oaks, CA: Corwin Press.
  115. Strange, B. A., Henson, R. N. A., Friston, K. J., & Dolan, R. J. (2001). Anterior prefrontal cortex mediates rule learning in humans. Cerebral Cortex, 11, 1040-1046. https://doi.org/10.1093/cercor/11.11.1040
  116. S̃uzcs, D., & Goswami, U. (2007). Educational Neuroscience: Defining a new discipline for the study of mental representations. Mind, Brain and Education, 1(3), 114-127. https://doi.org/10.1111/j.1751-228X.2007.00012.x
  117. Takahashi, H., Yahata, N., Koeda, M., Matsuda, T., Asai, K., & Okubo, Y. Brain activation associated with evaluative processes of guilt and embarrassment: an fMRI study. NeuroImage, 23, 967-974.
  118. Tanaka, S. C., Doya, K., Okada, G., Ueda, K., Okamoto, Y., & Yamawaki, S. (2004). Prediction of immediate and future rewards differentially recruits cortico-basal ganglia loops. Nature neuroscience, 7(8), 887-893. https://doi.org/10.1038/nn1279
  119. Tanaka, S. C., Schweighofer, N., Asahi, S., Shishida, K., Okamoto, Y., Yamawaki, S., & Doya, K. (2007). Serotonin differntially regulates short-and long-term prediction of rewards in the ventral and dorsal striatum. PLoS ONE, 2(12), e1333. https://doi.org/10.1371/journal.pone.0001333
  120. Taylor, S. F., Welsh, R. C., Wager, T. D., Phan, K. L., Fitzgerald, K. D., & Gehring, W. J. (2004). A functional neuroimaging study of motivation and executive function. NeuroImage, 21, 1045-1054. https://doi.org/10.1016/j.neuroimage.2003.10.032
  121. Thagard, P. (2002). The passionative scientist: Emotion in scientific cognition. In P. Carruthers, S. Sitch, & M. Siegal (Eds.), The Cognitive basis of science. Cambridge University Press.
  122. Tomasi, D., Chang, L., Caparelli, E. C., & Ernst, T. (2007). Different activation patterns for working memory load and visual attention load. Brain Research, 1132, 158-165. https://doi.org/10.1016/j.brainres.2006.11.030
  123. Virtue, S., Haberman, J., Clancy, Z., Parrish, T., & Jung-Beeman, M. (2006). Neural activity of inferences during story comprehension. Brain Research, 1084, 104-114. https://doi.org/10.1016/j.brainres.2006.02.053
  124. Volz, K. G., Schubotz, R. I., & Cramon, Y. V. (2005). Variants of uncertainty in decisionmaking and their neural correlates. Brain Research Bulletin, 67, 403-412. https://doi.org/10.1016/j.brainresbull.2005.06.011
  125. Williams, L. M., Phillips, M. L., Brammer, M. J., Skerrett, D., Lagopoulos, J., Rennie, C., Bahramali, H., Olivieri, G., David, A. S., Peduto, A., Gordon, E. (2001). Arousal dissociates amygdala and hippocampal fear responses: Evidence from simultaneous fMRI and skin conductance recording. NeuroImage, 14, 1070-1079. https://doi.org/10.1006/nimg.2001.0904
  126. Zald, D. H., Boileau, I., El-Dearedy, W., Gunn, R., McGlone, F., Dichter, G. S., & Dagher, A. (2004). Dopamine transmission in the human striatum during monetaty reward tasks. The Jounal of Neuroscience, 24(17), 4105-4112. https://doi.org/10.1523/JNEUROSCI.4643-03.2004
  127. Zanolie, K., Leijenhorst, L. V., Rombouts, S. A. R. B., & Crone, E. A. (2008). Separable neural mechanisms contribute to feedback processing in a rule-learning task. Neuropsychologia, 46, 117-126. https://doi.org/10.1016/j.neuropsychologia.2007.08.009
  128. Zhang, J. X., Leung, H., & Johnson, M. K. (2003). Frontal activations associated with accessing and evaluating information in working memory: an fMRI study. NeuroImage, 20, 1531-1539. https://doi.org/10.1016/j.neuroimage.2003.07.016

피인용 문헌

  1. Development and Application of Equations of the Contribution Degree on the Brain Compatibleness Index - Focused on ‘Structures and Functions of Cells' Unit in the 7th Grade Science Textbooks- vol.38, pp.4, 2010, https://doi.org/10.15717/bioedu.2010.38.4.531
  2. 과학 교수-학습 프로그램의 두뇌기반 분석을 위한 두뇌맞춤지수 산출식 개발 vol.30, pp.8, 2010, https://doi.org/10.14697/jkase.2010.30.8.1031