DOI QR코드

DOI QR Code

Antifungal Activity of Lower Alkyl Fatty Acid Esters against Powdery Mildews

  • Choi, Gyung-Ja (Chemical Biotechnology Research Center, Korea Research Institute of Chemical Technology) ;
  • Jang, Kyoung-Soo (Chemical Biotechnology Research Center, Korea Research Institute of Chemical Technology) ;
  • Choi, Yong-Ho (Chemical Biotechnology Research Center, Korea Research Institute of Chemical Technology) ;
  • Yu, Ju-Hyun (Chemical Biotechnology Research Center, Korea Research Institute of Chemical Technology) ;
  • Kim, Jin-Cheol (Chemical Biotechnology Research Center, Korea Research Institute of Chemical Technology)
  • Received : 2010.10.04
  • Accepted : 2010.11.19
  • Published : 2010.12.01

Abstract

In the course of a searhing environmental friendly antifungal compounds, we found that mixture of methyl esters of fatty acids obtained from soybean oil had potent control efficacy against barley powdery mildew (Blumeria graminis f. sp. hordei). In this study, ten alkyl fatty acid esters (AFAEs) were tested for in vivo antifungal activity against five plant diseases such as rice blast, rice sheath blight, tomato gray mold, tomato late blight and barley powdery mildew. Some AFAEs showed the most control efficacy against barley powdery mildew among the tested plant diseases. By 5-hr protective and 1-day curative applications, six AFAEs ($3,000\;{\mu}g/ml$), including methyl and ethyl palmitates, methyl and ethyl oleates, methyl linoleate, and methyl linolenate demonstrated both curative and protective activities against barley powdery mildew. In contrary, methyl laurate strongly controlled the development of powdery mildew on barley plants by curative treatment at a concentration of $333\;{\mu}g/ml$, but did not show protective activity even at $3,000\;{\mu}g/ml$. Under greenhouse conditions, the seven AFAEs ($1,000\;{\mu}g/ml$) except for methyl and ethyl stearates, and methyl caprylate also effectively controlled cucumber powdery mildew caused by Podosphaera xanthii. Among them, methyl and ethyl palmitates ($333\;{\mu}g/ml$) represented the most control activity of more than 68% against the disease. The results are the first report on the antifungal activity of methyl and ethyl esters of fatty acids against plant pathogenic fungi.

Keywords

References

  1. Agrios, G. N. 2005. Plant diseases caused by fungi. In: Plant Pathology. pp. 385-614. Academic Press, New York.
  2. Benyagoub, M., Bel Rhlid, R. and Belanger, R. R. 1996a. Purification and characterization of new fatty acids with antibiotic activity produced by Sporothrix flocculosa. J. Chem. Ecol. 22: 405-413. https://doi.org/10.1007/BF02033644
  3. Benyagoub, M., Bel Rhlid, R. and Belanger, R. R. 1996b. Influence of a subinhibitory dose of antifungal fatty acids from Sporothrix flocculosa on cellular lipid composition in fungi. Lipids 31:1077-1082. https://doi.org/10.1007/BF02522465
  4. British Crop Protection Council (BCPC). 2001. The Biopesticide Manual, 2nd edition. ed. by L. G. Copping, pp. 180-181, Surrey, UK.
  5. Chase, A. R. and Osborne, L. S. 1983. Influence of an insecticidal soap on several foliar diseases of foliage plants. Plant Dis. 67:1021-1023. https://doi.org/10.1094/PD-67-1021
  6. Cho, J. Y., Choi, G. J., Son, S. W., Jang, K. S., Lim, H. K., Lee, S. O., Cho, K. Y. and Kim, J.-C. 2007. Isolation and antifungal activity of lignans from Myristica fragrans against various plant pathogenic fungi. Pest Manag. Sci. 63:935-940. https://doi.org/10.1002/ps.1420
  7. Cho, K. Y., Choi, G. J., Kim J.-C., Jang, K. S., Lim, H. K., Son, J.- H., Choi, E.-S. and Lee, E.-S. 2007. Composition for protecting plant diseases comprising alkyl fatty acid ester. Republic of Korea Patent 0,700,504.
  8. Choi, G. J., Kim, J.-C., Jang, K. S., Lim, H. K., Park, I.-K., Shin, S. C. and Cho, K. Y. 2006. In vivo antifungal activities of 67 plant fruit extracts against six plant pathogenic fungi. J. Microbiol. Biotechnol. 16:491-495.
  9. Choi, N. H., Choi, G. J., Min, B.-S., Jang, K. S., Choi, Y. H., Kang, M. S., Park, M. S., Choi, J. E., Bae, B. K. and Kim, J.- C. 2009. Effects of neolignans from the stem bark of Magnolia obovata on plant pathogenic fungi. J. Appl. Microbiol. 106: 2057-2063. https://doi.org/10.1111/j.1365-2672.2009.04175.x
  10. Choi, G. J., Yu, J. H., Jang, K. S., Kim, H. T., Kim, J.-C. and Cho, K. Y. 2004. In vivo antifungal activities of surfactants against tomato late blight, red pepper blight, and cucumber downy mildew. J. Korean Soc. Appl. Biol. Chem. 47:339-343.
  11. Copping, L. G. and Menn, J. J. 2000. Biopesticides: a review of their action, applications and efficacy. Pest Manag. Sci. 56:651-676. https://doi.org/10.1002/1526-4998(200008)56:8<651::AID-PS201>3.0.CO;2-U
  12. De Waard, M. A., Kipp, E. M. C., Horn, N. M. V. and Van Nistelrooy, J. G. M. 1986. Variation in sensitivity to fungicides which inhibit ergosterol biosynthesis in wheat powdery mildew. Neth. J. Plant Pathol. 92:21-32. https://doi.org/10.1007/BF01976373
  13. Dik, A. J. and Van Der Staay, M. 1995. The effect of Milsana on cucumber powdery mildew under Dutch conditions. Med. Fac. Landbouww Univ. Gent. 59:1027-1034.
  14. Fernandez-Ortuno, D., Perez-Garcia, A., Lopez-Ruiz, F., Romero, D., de Vicente A. and Tores, J. A. 2006. Occurrence and distribution of resistance to QoI fungicides in populations of Podosphaera fusca in south central Spain. Eur. J. Plant Pathol. 115:215-222. https://doi.org/10.1007/s10658-006-9014-7
  15. Fletcher, J. S. and Wolfe, M. S. 1981. Insensitivity of Erysiphe graminis f. sp. hordei to triadimefon, triadimenol and other fungicides. Proc. Brighton Crop Prot. Conf., Pests & Dis. 633-640.
  16. Frick, E. L. and Burchill, R. T. 1972. Eradication of apple powdery mildew from infected buds. Plant Dis. Reptr. 56:770-772.
  17. Herger, G. and Klingauf, F. 1990. Control of powdery mildew fungi with extracts of the giant knotweed, Reynoutria sachalinensis (Polygonaceae). Med. Fac. Landbouww Rijksuniv. Gent. 55:1007-1014.
  18. Hou, C. T. and Forman III, R. J. 2000. Growth inhibition of plant pathogenic fungi by hydroxy fatty acids. J. Ind. Microbiol. Biotechnol. 24:275-276. https://doi.org/10.1038/sj.jim.2900816
  19. Ishii, H., Fraaije, B. A., Sugiyama, T., Noguchi, K., Nishimura, K., Takeda, T., Amano, T. and Hollomon, D. W. 2001. Occurrence and molecular characterization of strobilurin resistance in cucumber powdery mildew and downy mildew. Phytopathology 91:1166-1171. https://doi.org/10.1094/PHYTO.2001.91.12.1166
  20. Jang, K. S., Kim, H. T., Yoo, J. H., Choi, G. J. and Kim, J.-C. 2001. Controlling effect of several surfactants on barley powdery mildew caused by Erysiphe graminis f. sp. hordei. Kor. J. Pestic. Sci. 5:51-57 (in Korean).
  21. Kabara, J. J., Swieczkowski, D. M., Coney, A. J. and Truant, J. P. 1972. Fatty acids and derivatives as antimicrobial agents. Antimicrob. Ag. Chemother. 2:23-28. https://doi.org/10.1128/AAC.2.1.23
  22. Kabara, J. J. 1984. Antimicrobial agents derived from fatty acids. J. Am. Oil Chem. Soc. 61:397-403. https://doi.org/10.1007/BF02678802
  23. Kajikawa, A. T., Watanabe, T., Akutsu, K., Ko, K. and Misato, T. 1984. Effect of cationic surfactants on powdery mildew of cucumber. J. Pesticide Sci. 9:763-768. https://doi.org/10.1584/jpestics.9.763
  24. Kim, J.-C., Choi, G. J., Park, J.-H., Kim, H. T. and Cho, K. Y. 2001. Activity against plant pathogenic fungi of phomalactone isolated from Nigrospora sphaerica. Pest Manag. Sci. 57:554-559. https://doi.org/10.1002/ps.318
  25. Kim, J.-C., Choi, G. J., Lee, S.-W., Kim, J.-S., Chung, K. Y. and Cho, K. Y. 2004. Screening extracts of Achyranthes japonica and Rumex crispus for activity against various plant pathogenic fungi and control of powdery mildew. Pest Manag. Sci. 60:803-808. https://doi.org/10.1002/ps.811
  26. MacGrath, M. T. 1996. Successful management of powdery mildew in pumpkin with disease threshold-based fungicide programs. Plant Dis. 80:910-916. https://doi.org/10.1094/PD-80-0910
  27. McGrath, M. T. and Shishkoff, N. 1999. Evaluation of biocompatible products for managing cucurbit powdery mildew. Crop Prot. 18:471-478. https://doi.org/10.1016/S0261-2194(99)00048-4
  28. McGrath, M. T. and Shishkoff, N. 2003. First report of the cucurbit powdery mildew fungus (Podosphaera xanthii) resistant to strobilurin fungicides in United States. Plant Dis. 87:1007.
  29. Northover, J. and Schneider, K. E. 1993. Activity of plant oils on diseases caused by Podosphaera leucotricha, Venturia inaequalis, and Albugo occidentalis. Plant Dis. 77:152-157. https://doi.org/10.1094/PD-77-0152
  30. Novak, A. F., Clark, G. C. and Dupuy, H. P. 1961. Antimicrobial activity of some ricinoleic and oleic acid derivatives. J. Am. Oil Chem. Soc. 38:321-324. https://doi.org/10.1007/BF02638439
  31. Pasini, C., D’Aquila, F., Curir, P. and Gullino, M. L. 1997. Effectiveness of antifungal compounds against rose powdery mildew (Sphaerotheca pannosa var. rosae) in glasshouses. Crop Prot. 16:251-256. https://doi.org/10.1016/S0261-2194(96)00095-6
  32. Prithiviraj, B., Singh, U. P., Singh, K. P. and Plank-Schumacher, K. 1998. Field evaluation of ajoene, a constitutent of garlic (Allium sativum), and neemazal, a product of neem (Azadirachta indica), for the control of powdery mildew (Erysiphe pisi) of pea (Pisum sativum). J. Plant Dis. Prot. 105:274-278.
  33. Savage, S. D., Evans, S. L., Haygood, R. A. and Zorner, P. S. 2000. Fatty acid based compositions for the control of established plant infections. United States Patent 6,136,856.
  34. Schepers, H. T. A. M. 1983. Decreased sensitivity of Sphaerotheca fuliginea to fungicides which inhibit ergosterol biosynthesis. Neth. J. Plant Pathol. 89:185-187. https://doi.org/10.1007/BF01999846
  35. Schroedder, W. T. and Providenti, R. 1969. Resistance to benomyl in powdery mildew in cucurbits. Plant Dis. Reptr. 53:271-275.
  36. Singh, U. P., Prithiviraj, B., Wagner, K. G. and Plank-Schumacher, K. 1995. Effect of ajoene, a constitute of garlic (Allium sativum), on powdery mildew (Erysiphe pisi) of pea (Pisum sativum). J. Plant Dis. Prot. 102:399-406.
  37. Vargas, J. M. Jr. 1973. A benzimidazole resistant strain of Erysiphe graminis. Phytopathology 63:1366-1368. https://doi.org/10.1094/Phyto-63-1366
  38. Wilcox, W. F., Burr, J. A., Riegel, D. G., Wong, F. P. 2003. Practical resistance to QoI fungicides in New York populations of Uncinula necator associated with quantitative shifts in pathogen sensitivities. Phytopathology 93:S90.

Cited by

  1. Investigations on the role of cuticular wax in resistance to powdery mildew in grapevine vol.83, pp.5, 2017, https://doi.org/10.1007/s10327-017-0728-5
  2. Composition and Biological Activities of Murraya paniculata (L.) Jack Essential Oil from Nepal vol.3, pp.1, 2016, https://doi.org/10.3390/medicines3010007
  3. Structure, bioactivity and implications for environmental remediation of complexes comprising the fungicide hexaconazole bound to copper vol.70, pp.2, 2014, https://doi.org/10.1002/ps.3536
  4. Evaluation of fungal antagonists to control black mold disease under field conditions and to induce the accumulation of antifungal compounds in onion following seed and set treatment vol.65, 2014, https://doi.org/10.1016/j.cropro.2014.06.027
  5. Evaluation of antifungal activity of free fatty acids methyl esters fraction isolated from Algerian Linum usitatissimum L. seeds against toxigenic Aspergillus vol.3, pp.6, 2013, https://doi.org/10.1016/S2221-1691(13)60094-5
  6. Protective Effect of Polygonum orientale L. Extracts against Clavibater michiganense subsp. sepedonicum, the Causal Agent of Bacterial Ring Rot of Potato vol.8, pp.7, 2013, https://doi.org/10.1371/journal.pone.0068480
  7. Microalgal fatty acid methyl ester a new source of bioactive compounds with antimicrobial activity vol.4, 2014, https://doi.org/10.1016/S2222-1808(14)60769-6
  8. vol.2018, pp.1741-4288, 2018, https://doi.org/10.1155/2018/3142073