DOI QR코드

DOI QR Code

Protective Effect of Nitric Oxide against Oxidative Stress under UV-B Radiation in Maize Leaves

UV-B 조사시 옥수수 잎의 산화적 스트레스에 대한 Nitric Oxide의 보호효과

  • Kim, Tae-Yun (Department of Biological Sciences, Pusan National University) ;
  • Jo, Myung-Hwan (Department of Biological Sciences, Pusan National University) ;
  • Hong, Jung-Hee (Department of Biological Sciences, Pusan National University)
  • Received : 2010.09.01
  • Accepted : 2010.12.01
  • Published : 2010.12.31

Abstract

The effect of nitric oxide (NO) on antioxidant system and protective mechanism against oxidative stress under UV-B radiation was investigated in leaves of maize (Zea mays L.) seedlings during 3 days growth period. UV-B irradiation caused a decrease of leaf biomass including leaf length, width and weight during growth. Application of NO donor, sodium nitroprusside (SNP), significantly alleviated UV-B stress induced growth suppression. NO donor permitted the survival of more green leaf tissue preventing chlorophyll content reduction and of higher quantum yield for photosystem II than in non-treated controls under UV-B stress, suggesting that NO has protective effect on chloroplast membrane in maize leaves. Flavonoids and anthocyanin, UV-B absorbing compounds, were significantly accumulated in the maize leaves upon UV-B exposure. Moreover, the increase of these compounds was intensified in the NO treated seedlings. UV-B treatment resulted in lipid peroxidation and induced accumulation of hydrogen peroxide ($H_2O_2$) in maize leaves, while NO donor prevented UV-B induced increase in the contents of malondialdehyde (MDA) and $H_2O_2$. These results demonstrate that NO serves as antioxidant agent able to scavenge $H_2O_2$ to protect plant cells from oxidative damage. The activities of two antioxidant enzymes that scavenge reactive oxygen species, catalase (CAT) and ascorbate peroxidase (APX) in maize leaves in the presence of NO donor under UV-B stress were higher than those under UV-B stress alone. Application of 2-(4-carboxyphenyl)-4, 4, 5, 5-tetramethylimidazoline-1-oxyl-3- oxide (PTIO), a specific NO scavenger, to the maize leaves arrested NO donor mediated protective effect on leaf growth, photosynthetic pigment and free radical scavenging activity. However, PTIO had little effect on maize leaves under UV-B stress compared with that of UV-B stress alone. $N^{\omega}$-nitro-L-arginine (LNNA), an inhibitor of nitric oxide synthase (NOS), significantly increased $H_2O_2$ and MDA accumulation and decreased antioxidant enzyme activities in maize leaves under UV-B stress. This demonstrates that NOS inhibitor LNNA has opposite effects on oxidative resistance. From these results it is suggested that NO might act as a signal in activating active oxygen scavenging system that protects plants from oxidative stress induced by UV-B radiation and thus confer UV-B tolerance.

Keywords

References

  1. An, L., Liu, Y., Zhang, M., Chen, T., Wang, X., 2005,Effects of nitric oxide on growth of maize seedlingleaves in the presence or absence of ultraviolet-Bradiation, J. Plant. Physiol., 162, 317-326. https://doi.org/10.1016/j.jplph.2004.07.004
  2. Apel, K., Hirt, H., 2004, Reactive oxygen species :metabolism, oxidative stress, and signal transduction,Annu. Rev. Plant Biol., 55, 373-399. https://doi.org/10.1146/annurev.arplant.55.031903.141701
  3. Beligni, M. V., Lamattina, L., 2000, Nitric oxidestimulates seed germination and de-etiolation, andinhibits hypocotyl elongation, three light-inducibleresponses in plants, Planta, 210, 215-221. https://doi.org/10.1007/PL00008128
  4. Beligni, M. V., Lamattina, L., 2001, Nitric oxide inplants : the history is just beginning, Plant CellEnviron. 24, 267-278. https://doi.org/10.1046/j.1365-3040.2001.00672.x
  5. Brosche, M., Strid, A., 2003, Molecular eventsfollowing perception of ultraviolet-B radiation byplants, Physiol. Plant., 117, 1-10. https://doi.org/10.1034/j.1399-3054.2003.1170101.x
  6. Clark, D., Dunar, J., Navarre, D. A., Klessig, D. F.,2000, Nitric oxide inhibition of tobacco catalaseand ascorbate peroxidase, Mol. Plant-MicrobeInteract., 14, 1380-1384. https://doi.org/10.1094/MPMI.2000.13.12.1380
  7. Durner, J., Klessing, D. F., 1996, Salicylic acid is amodulator of tobacco and mammalian catalases, J.Biol. Chem., 271, 28492-28502. https://doi.org/10.1074/jbc.271.45.28492
  8. Frohnmeyer, H., Staiger, D., 2003, Ultraviolet-B radiation-mediatedresponses in plants : balancing damageand protection, Plant Physiol., 133, 1420-1428. https://doi.org/10.1104/pp.103.030049
  9. Greenberg, B. M., Wilson, M. I., Huang, X. D.,Duxbury, C. L., Gerhardt, K. E., Gensemer, R. W.,1997, The effects of ultraviolet-B radiation onhigher plants, In : Wang, W., Gorsuch, J. W., Hughes,J. S. (eds.), Plants for environmental studies, CRCLewis Publishers, Boca Raton, N. Y., 1-35.
  10. Harborne, J. B., Williams, C. A., 2000, Advances inflavonoid research since 1992, Phytochem., 55,481-504. https://doi.org/10.1016/S0031-9422(00)00235-1
  11. Hsu, Y. T., Kao, C. H., 2004, Cadmium toxicity isreduced by nitric oxide in rice leaves, Plant GrowthRegul., 42, 227-238. https://doi.org/10.1023/B:GROW.0000026514.98385.5c
  12. Hung, K. T., Chang, C. J., Kao, C. H., 2002, Paraquattoxicity is reduced by nitric oxide in rice leaves, J.Plant Physiol., 159, 159-166. https://doi.org/10.1078/0176-1617-00692
  13. Huang, X., Rad, U., Durner, J., 2002, Nitric oxideinduces transcriptional activation of the nitricoxide-tolerant alternative oxidase in Arabidopsissuspension cells, Planta, 215, 914-923. https://doi.org/10.1007/s00425-002-0828-z
  14. Inskeep, W. P., Bloom, P. R., 1985, Extinction coefficientsof chlorophyll a and b in N, N-dimethylformamideand 80% acetone, Plant Physiol., 77, 483-485. https://doi.org/10.1104/pp.77.2.483
  15. Lamotte, O., Gould, K., Lecourieux, D., Sequeira-Legrand, A., Lebrun-Garcia, A., Durner, J., Pugin,A., Wendehenne, D., 2004, Analysis of nitric oxidesignalling functions in tobacco cells challenged bythe elicitor cryptogein, Plant Physiol., 135, 516-529. https://doi.org/10.1104/pp.104.038968
  16. Leshem, Y. Y., 1996, Nitric oxide in biological systems,Plant Growth Regul., 18, 155-159. https://doi.org/10.1007/BF00024375
  17. Leshem, Y. Y., Haramaty, E., 1996, The characterizationand contrasting effects of the nitric oxide freeradical in vegetative stress and senescence ofPisum sativum Linn. foliage, J. Plant Physiol., 148,258-263. https://doi.org/10.1016/S0176-1617(96)80251-3
  18. Mackerness, S. A. -H., 2000, Plant responses to ultraviolet-B (UV-B : 280-320 nm) stress : what are the keyregulators?, Plant Growth Regul., 32, 27-39. https://doi.org/10.1023/A:1006314001430
  19. Mackerness, S. A. -H., John, C. F., Jordan, B., Thomas,B., 2001, Early signaling components in ultraviolet-B responses : distinct roles for different reactiveoxygen species and nitric oxide, FEBS Lett., 489,237-242. https://doi.org/10.1016/S0014-5793(01)02103-2
  20. Mirecki, R. M., Teramura, A. H., 1984, Effects ofultraviolet-B irradiance on soybean, Plant Physiol.,74, 475-480. https://doi.org/10.1104/pp.74.3.475
  21. Mittler, R., 2002, Oxidative stress, antioxidants andstress tolerance, Trends Plant Sci., 7, 405-410. https://doi.org/10.1016/S1360-1385(02)02312-9
  22. Neill, S. J., Desikan, R., Hancock, J. T., 2003, Nitricoxide signaling in plants, New Phytol., 159, 11-35. https://doi.org/10.1046/j.1469-8137.2003.00804.x
  23. Qiao, W., Fan, L.-M., 2008, Nitric oxide signaling inplant response abiotic stresses, J. Int. Plant Biol.,50, 1238-1246. https://doi.org/10.1111/j.1744-7909.2008.00759.x
  24. Schreiber, U., Schliwa, U., Bilger, W., 1986, Continuousrecording of photochemical and nonphotochemicalchlorophyll fluorescence quencing with a new typeof modulation fluorometer, Photosynth. Res., 10,51-62. https://doi.org/10.1007/BF00024185
  25. Song, L., Ding, W., Zhao, M., Sun, B., Zhang, L., 2006,Nitric oxide protects against oxidative stress underheat stress in the calluses from two ecotypes ofreed, Plant Sci., 171, 449-458. https://doi.org/10.1016/j.plantsci.2006.05.002
  26. Tossi, V., Lamattina, L., Cassia, R., 2009, An increasein the concentration of abscisic acid is critical fornitric oxide-mediated plant adaptive responses toUV-B irradiation, New Phytol., 181, 871-879. https://doi.org/10.1111/j.1469-8137.2008.02722.x
  27. Tu, J., Shen, Y. B., Xu, L. L., 2003, Regulation of nitricacid on the aging process of wheat leaves, Acta.Bot. Sin., 45, 1055-1062.
  28. Uchida, A., Jagendorf, A. T., Hibino, T., Takabe, T.,Takabe, T., 2002, Effects of hydrogen peroxide andnitric oxide on both salt and heat stress tolerance inrice, Plant Sci., 163, 515-523. https://doi.org/10.1016/S0168-9452(02)00159-0
  29. Veljovic-Jovanovic, S., Noctor, G., Foyer, C. H., 2002,Are leaf hydrogen peroxide concentration commonlyoverestimated? The potential influence of artefactualinterference by tissue phenolics and ascorbate,Plant Physiol. Biochem., 40, 501-507. https://doi.org/10.1016/S0981-9428(02)01417-1
  30. Warren, J. M., Bassman, J. H., Mattinson, D. S.,Fellman, J. K., Edwards, G. E., Robberecht, R.,2002, Alteration of foliar flavonoid chemistryinduced by enhanced UV-B radiation in field-grownPinus ponderosa, Quercus rubra and Pseudotsugamenziesii, Photochem. Photobiol., 66, 125-133. https://doi.org/10.1016/S1011-1344(02)00230-0
  31. Wendehenne, D., Pulgin, A., Klessing, D. F., Durner, J.,2001, Nitric acid : comparative synthesis andsignaling in animal and plant cell, Trends PlantSci., 6, 177-186. https://doi.org/10.1016/S1360-1385(01)01893-3
  32. Wilson, I. D., Neill, S. J., Hancock, J. T., 2008, Nitricoxide synthesis and signalling in plants, Plant, Cell& Environ. 31, 622-631. https://doi.org/10.1111/j.1365-3040.2007.01761.x
  33. Yannarelli, G. G., Gallego, S. M., Tomaro, M., 2005,Effect of UV-B radiation on the activity andisoforms of enzymes with peroxidase activity insunflower cotyledons, Environ. Exp. Bot., 56, 174-181. https://doi.org/10.1016/j.envexpbot.2005.01.015
  34. Zhang, M., An, L., Feng, H., Chen, T., Chen, K., Liu, L.,Tang, H., Chang, J., Wang, X., 2003a, The cascademechanisms of nitric oxide as a second messengerof ultraviolet-B in inhibiting mesocotyl elongations,Photochem. Photobiol., 77, 219-225. https://doi.org/10.1562/0031-8655(2003)077<0219:TCMONO>2.0.CO;2
  35. Zhang, H., Shen, M. B., Xu, L. L., 2003b, Effects ofnitric oxide on the germination of wheat seeds andits reactive oxygen species metabolism underosmotic stress, Acta. Bot. Sin., 45, 901-905.
  36. Zhang, L., Zhou, S., Xuan, Y., Sun, M., Zhao, L., 2009,Protective effect of nitric oxide against oxidativedamage in Arabidopsis leaves under UV-Birradiation, J. Plant Biol., 52, 135-140. https://doi.org/10.1007/s12374-009-9013-2
  37. Zhao, M. G., Zhao, X., Wu, Y. X., Zhang, L. X., 2007,Enhanced sensitivity to oxidative stress inArabidopsis nitric oxide synthesis mutant, J. PlantPhysiol., 164, 737-745. https://doi.org/10.1016/j.jplph.2006.03.002
  38. hao, S. J., Xu, C. C., Zhou, Q., Meng, Q. W., 1994.Improvement of method for measurement ofmalondialdehyde in plant tissues, Plant Physiol.Comm., 30, 207-210.

Cited by

  1. Involvement of Inositol Biosynthesis and Nitric Oxide in the Mediation of UV-B Induced Oxidative Stress vol.7, pp.1664-462X, 2016, https://doi.org/10.3389/fpls.2016.00430