DOI QR코드

DOI QR Code

Effect of Fe Magnetic Nanoparticles in Rubber Matrix

  • Uhm, Young-Rang (Nuclear Materials Research Division, Korea Atomic Energy Research Institute (KAERI)) ;
  • Kim, Jae-Woo (Nuclear Materials Research Division, Korea Atomic Energy Research Institute (KAERI)) ;
  • Jun, Ji-Heon (Nuclear Materials Research Division, Korea Atomic Energy Research Institute (KAERI)) ;
  • Lee, Sol (Nuclear Materials Research Division, Korea Atomic Energy Research Institute (KAERI)) ;
  • Rhee, Chang-Kyu (Nuclear Materials Research Division, Korea Atomic Energy Research Institute (KAERI)) ;
  • Kim, Chul-Sung (Nano-electro Physics, Kookmin University)
  • Received : 2010.09.16
  • Accepted : 2010.12.20
  • Published : 2010.12.31

Abstract

A new kind of magnetic rubber, Fe dispersed ethylene propylene monomer (EPM), was prepared by a conventional technique using a two roll mill. The magnetic fillers of Fe-nanoparicles were coated by low density polyethylene (LDPE). The purpose of surface treatment of nanoparticles by LDPE is to enhance wettability and lubricancy of the fillers in a polymer matrix. The mechanical strength and microstructure of the magnetic rubber were characterized by tensile strength test and scanning electron microscopy (SEM). Results revealed that the Fe nanoparticles were relatively well dispersed in an EPM matrix. It was found that the nano- Fe dispersed magnetic rubber showed higher coercivity and tensile strength than those of micron- Fe dispersed one.

Keywords

References

  1. E. Muhammad Abdul Jamal, P. A. Joy, P. Kurian, and M. R. Anantharaman, Mater. Sci. Eng. B 156, 24 (2009). https://doi.org/10.1016/j.mseb.2008.10.041
  2. M. Li, Z. He, H. M. Zheng, and N. Zhang, Acta Mech. Solida Sin. 21, 247 (2008). https://doi.org/10.1007/s10338-008-0828-z
  3. Y. Sun, X. Zhou, Y. Liu, G. Zhao, and Y. Jiang, Mater. Res. Bull. 45, 878 (2010). https://doi.org/10.1016/j.materresbull.2010.01.017
  4. L. Mattias, R. torjorn, and S. Bent, Polym. Degrad. Stabil. 86, 467 (2004). https://doi.org/10.1016/j.polymdegradstab.2004.05.019
  5. K. A. Malini, P. Kurian, and M. R. Anatharamana, Mater. Lett. 57, 3381 (2003). https://doi.org/10.1016/S0167-577X(03)00079-X
  6. Tao Jiang, Zhihao Jin, Jianfeng Yang, and Guangun Qiao, J. Mater. Process. Tech. 209, 561 (2009). https://doi.org/10.1016/j.jmatprotec.2008.02.026
  7. K. Niihara, Ceram. Soc. Jpn. 99, 974 (1991). https://doi.org/10.2109/jcersj.99.974
  8. J. H. Kim, H. J. Oh, N. H. Lee, C. R. Yoon, and S. J. Kim, J. Kor. Phys. Soc. 48, 1329 (2006).
  9. N. Kaya, Nucl. Insr. Meth. B 261, 711 (2007). https://doi.org/10.1016/j.nimb.2007.04.098
  10. J. A. Reyes-Labarta, Polymer 47, 8194 (2006). https://doi.org/10.1016/j.polymer.2006.09.054
  11. H. M. Lee, Y. R. Uhm, and C. K. Rhee, J. Alloy. Comp. 461, 604 (2008). https://doi.org/10.1016/j.jallcom.2007.07.075
  12. Y. R. Uhm, J. Kim, J. Jung, and C. K. Rhee, Modern Phys. Lett. B 23, 3931 (2009). https://doi.org/10.1142/S0217984909022022
  13. J. Jung, J. Kim, Y. R. Uhm, J.-K. Jeon, S. Lee, H. M. Lee, and C. K. Rhee, Thermochimica Acta 499, 8 (2010). https://doi.org/10.1016/j.tca.2009.10.013
  14. B. S. Han, C. K. Rhee, M. K. Lee, and Y. R. Uhm, IEEE Trans. Magn. 42, 4779 (2006).
  15. D. L. Leslie-Pelecky, and R. D. Rieke, Chem. Mater. 8, 1770 (1996). https://doi.org/10.1021/cm960077f

Cited by

  1. Effect of particle size, dispersion, and particle–matrix adhesion on W reinforced polymer composites vol.40, pp.5, 2014, https://doi.org/10.1007/s11164-013-1110-7