DOI QR코드

DOI QR Code

Microstructural Analysis of Epitaxial Layer Defects in Si Wafer

  • Lim, Sung-Hwan (Department of Advanced Materials Science and Engineering, Kangwon National University)
  • Received : 2010.10.30
  • Accepted : 2010.11.10
  • Published : 2010.12.27

Abstract

The structure and morphology of epitaxial layer defects in epitaxial Si wafers produced by the Czochralski method were studied using focused ion beam (FIB) milling, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Epitaxial growth was carried out in a horizontal reactor at atmospheric pressure. The p-type Si wafers were loaded into the reactor at about $800^{\circ}C$ and heated to about $1150^{\circ}C$ in $H_2$. An epitaxial layer with a thickness of $4{\mu}m$ was grown at a temperature of 1080-$1100^{\circ}C$. Octahedral void defects, the inner walls of which were covered with a 2-4 nm-thick oxide, were surrounded mainly by $\{111\}$ planes. The formation of octahedral void defects was closely related to the agglomeration of vacancies during the growth process. Cross-sectional TEM observation suggests that the carbon impurities might possibly be related to the formation of oxide defects, considering that some kinds of carbon impurities remain on the Si surface during oxidation. In addition, carbon and oxygen impurities might play a crucial role in the formation of void defects during growth of the epitaxial layer.

Keywords

References

  1. S. Mahajan, Progr. Mater. Sci., 33, 1 (1989). https://doi.org/10.1016/0079-6425(89)90003-0
  2. M. Kato, T. Yoshida, Y. Ikeda and Y. Kitagawara, Jpn. J. Appl. Phys., 35, 5597 (1996). https://doi.org/10.1143/JJAP.35.5597
  3. M. Itsumi and F. Kiyosumi, Appl. Phys. Lett., 40, 496 (1982). https://doi.org/10.1063/1.93155
  4. H. Yamagishi, I. Fusegawa, N. Fujimaki and M. Katayama, Semicond. Sci. Tech., 7, A135 (1992). https://doi.org/10.1088/0268-1242/7/1A/025
  5. M. Itsumi, M. Tomita and M. Yamawaki, J. Appl. Phys., 78, 1940 (1995). https://doi.org/10.1063/1.360232
  6. J. Ryuta, E. Morita, T. Tanaka and Y. Shimanuki, Jpn. J. Appl. Phys., 29, L1947 (1990). https://doi.org/10.1143/JJAP.29.L1947
  7. K. Nakai, M. Hasebe, K. Ohta and W. Ohashi, J. Cryst. Growth, 210, 20 (2000). https://doi.org/10.1016/S0022-0248(99)00639-9
  8. S. Mendelson, J. Appl. Phys., 35, 1570 (1964). https://doi.org/10.1063/1.1713669
  9. J. A. Rossi, W. Dyson, L. G. Hellwing and T. M. Hanley, J. Appl. Phys., 58, 1798 (1985). https://doi.org/10.1063/1.336030
  10. N. Munter, B. O. Kolbesen, W. Storm and T. Muller, J. Electrochem. Soc., 150, G192 (2003). https://doi.org/10.1149/1.1542905
  11. M. Iwabuchi, K. Mizushima, M. Mizuno and Y. Kitagawara, J. Electrochem. Soc., 147, 1199 (2000). https://doi.org/10.1149/1.1393336
  12. F. Altmann and D. Katzer, Thin Solid Films, 343-344, 609 (1999). https://doi.org/10.1016/S0040-6090(98)01683-6
  13. K. Minowa, K. Takeda, S. Tomimatsu and K. Umemura, J. Cryst. Growth, 210, 15 (2000). https://doi.org/10.1016/S0022-0248(99)00638-7
  14. J. C. Reiner, P. Gasser and U. Sennhauser, Microelectron. Reliab., 42, 1753 (2002). https://doi.org/10.1016/S0026-2714(02)00225-1
  15. S. H. Lim and D. Shindo, Phys. Rev. Lett., 86, 3795 (2001). https://doi.org/10.1103/PhysRevLett.86.3795
  16. S. H. Lim, D. Shindo, I. Yonenaga, P. D. Brown and C. J. Humphreys, Phys. Rev. Lett., 81, 5350 (1998). https://doi.org/10.1103/PhysRevLett.81.5350
  17. H. O. Kim, W. J. Kim, K. H. Lee and S. I. Hong, Kor. J. Mater. Res., 17(8), 408 (2007). (in Korean) https://doi.org/10.3740/MRSK.2007.17.8.408