DOI QR코드

DOI QR Code

A non-replicating oncolytic vector as a novel therapeutic tool against cancer

  • Kaneda, Yasufumi (Division of Gene Therapy Science, Graduate School of Medicine, Osaka University)
  • Received : 2010.11.15
  • Published : 2010.12.31

Abstract

Cancers are still difficult targets despite recent advances in cancer therapy. Due to the heterogeneity of cancer, a single-treatment modality is insufficient for the complete elimination of cancer cells. Therapeutic strategies from various aspects are needed. Gene therapy has been expected to bring a breakthrough to cancer therapy, but it has not yet been successful. Gene therapy also should be combined with other treatments to enhance multiple therapeutic pathways. In this view, gene delivery vector itself should be equipped with intrinsic anti-cancer activities. HVJ (hemagglutinating virus of Japan; Sendai virus) envelope vector (HVJ-E) was developed to deliver therapeutic molecules. HVJ-E itself possessed anti-tumor activities such as the generation of anti-tumor immunities and the induction of cancer-selective apoptosis. In addition to the intrinsic anti-tumor activities, therapeutic molecules incorporated into HVJ-E enabled to achieve multi-modal therapeutic strategies in cancer treatment. Tumor-targeting HVJ-E was also developed. Thus, HVJ-E will be a novel promising tool for cancer treatment.

Keywords

References

  1. Moon, C., Oh, Y. and Roth, J. A. (2003) Current status of gene therapy for lung cancer and head and neck cancer. Clin. Cancer Res. 9, 5055-5067.
  2. Fujiwara, T., Tanaka, N., Kanazawa, S., Ohtani, S., Saijo, Y., Nukiwa, T., Yoshimura, K., Sato, T., Eto, Y., Chada, S., Nakamura, H. and Kato, H. (2006) Multicenter phase I study of repeated intratumoral delivery of adenoviral p53 in patients with advanced non-small-cell lung cancer. J. Clin. Oncol. 24, 1689-1699. https://doi.org/10.1200/JCO.2005.03.4116
  3. O'Neill, D. and Bhardwaj, N. (2005) Exploiting dendritic cells for active immunotherapy of cancer and chronic infection. Methods Mol. Med. 109, 1-18.
  4. Kim, R., Emi, M. and Tanabe, K. (2006) Cancer immuno-suppression and autoimmune disease: beyond immuno-suppressive network for tumor immunity. Immunology 119, 254-264. https://doi.org/10.1111/j.1365-2567.2006.02430.x
  5. Dudley, M. E., Yang, J. C., Sherry, R., Hughes, M. S., Royal, R., Kammula, U., Robbins, P. F., Huang, J., Citrin, D. E., Leitman, S. F., Wunderlich, J., Restifo, N. P., Thomasian, A., Downey, S. G., Smith, F. O., Klapper, J., Morton, K., Laurencot, C., White, D. E. and Rosenberg, S. A. (2008) Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J. Clin. Oncol. 26, 5233-5239. https://doi.org/10.1200/JCO.2008.16.5449
  6. Kirkwood, J. M., Tarhini, A. A., Panelli, M. C., Moschos, S. J., Zarour, H. M., Butterfield, L. H. and Gogas, H. J. (2008) Next generation of immunotherapy for melanoma. J. Clin. Oncol. 20, 3445-3455.
  7. Samuel, M., Chow, P. K., Chan, Shih-Yen, E., Machin, D. and Soo, K. C. (2009) Neoadjuvant and adjuvant therapy for surgical resection of hepatocellular carcinoma. Database Syst. Rev. Jan. 21(1), CD001199.
  8. Kelly, E. and Russell, S. J. (2007) History of oncolytic viruses: genesis to genetic engineering. Mol. Ther. 15, 651-659. https://doi.org/10.1038/sj.mt.6300108
  9. Liu, T. C. and Kirn, D. (2008) Gene therapy progress and prospects cancer: oncolytic viruses. Gene Ther. 15, 877-884. https://doi.org/10.1038/gt.2008.72
  10. Kirn, D. H. and Thorne, S. H. (2009) Targeted and armed oncolytic poxviruses: a novel multi-mechanistic therapeutic class for cancer. Nat. Rev. Cancer 9, 64-71. https://doi.org/10.1038/nrc2545
  11. Kaneda, Y., Nakajima, T., Nishikawa, T., Yamamoto, S., Ikegami, H., Suzuki, N., Nakamura, H., Morishita, R. and Kotani, H. (2002) HVJ (hemagglutinating virus of Japan) envelope vector as a versatile gene delivery system. Mol. Ther. 6, 219-226. https://doi.org/10.1006/mthe.2002.0647
  12. Kaneda, Y. (2010) Update on non-viral delivery methods for cancer therapy; possibilities of DDS with anti-cancer activities beyond delivery as a new therapeutic tool. Expert Opinion Drug Delivery 9, 1079-1093
  13. Okada, Y. (1993) Sendai virus-induced cell fusion; in Methods in Enzymology volume 221, Duzgunes N, (ed.). pp 18-41. Academic Press, Inc., San Diego, USA.
  14. Kaneda, Y., Saeki, Y. and Morishita, R. (1999) Gene therapy using HVJ-liposomes; the best of both worlds. Mol. Med. Today 5, 298-303. https://doi.org/10.1016/S1357-4310(99)01482-3
  15. Kaneda, Y. (2008) Applications on hemagglutinating virus of Japan in therapeutic delivery system. Expert Opinion Drug Delivery 5, 221-233. https://doi.org/10.1517/17425247.5.2.221
  16. Kaneda, Y., Nakajima, T. and Yamamoto, S. (2005) Development of HVJ envelope vector and its application to gene therapy. Adv. Genet. 53PA, 307-332.
  17. Kurooka, M. and Kaneda, Y. (2007) Inactivated Sendai virus particles eradicate tumors by inducing immune responses through blocking regulatory T cells. Cancer Res. 67, 227-236. https://doi.org/10.1158/0008-5472.CAN-06-1615
  18. Fujihara, A., Kurooka, M., Miki, T. and Kaneda Y. (2008) Intratumoral injection of inactivated Sendai virus particles elicits strong antitumor activity by enhancing local CXCL10 expression and systemic NK cell activation. Cancer Immunol. Immunother. 57, 73-84. https://doi.org/10.1007/s00262-007-0351-y
  19. Pasare, C. and Medzhitov, R. (2003)Toll pathway-dependent blockade of $CD4^+CD25^+$ T cell-mediated suppression by dendritic cells. Science 299, 1033-1036. https://doi.org/10.1126/science.1078231
  20. Lal, G., Zhang, N., van der Touw, W., Ding, Y., Ju, W., Bottinger, E. P., Reid, S. P., Levy, D. E. and Bromberg, J. S. (2009) Epigenetic regulation of Foxp3 expression in regulatory T cells by DNA methylation. J. Immunol. 182, 259-273. https://doi.org/10.4049/jimmunol.182.1.259
  21. Kato, H., Takeuchi, O., Sato, S., Yoneyama, M., Yamamoto, M., Matsui, K., Uematsu, S., Jung, A., Kawai, T., Ishii, K. J., Yamaguchi, O., Otsu, K., Tsujimura, T., Koh, C. S., Sousa, C. R., Matsuura, Y., Fujita, T. and Akira, S. (2006) Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441, 101-105. https://doi.org/10.1038/nature04734
  22. Seth, R. B., Sun, L., Ea, C. K. and Chen, Z. J. (2005) Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 122, 669-682. https://doi.org/10.1016/j.cell.2005.08.012
  23. Tang, E. D. and Wang, C. Y. (2010) TRAF5 is a down-stream target of MAVS in antiviral innate immune signaling. PLoS One 5(2), e9172. https://doi.org/10.1371/journal.pone.0009172
  24. Suzuki, H., Kurooka, M., Hiroaki, Y., Fujiyoshi, Y. and Kaneda, Y. (2008) Sendai virus F glycoprotein induces IL-6 production in dendritic cells in a fusion-independent manner. FEBS Letter 582, 1325-1329. https://doi.org/10.1016/j.febslet.2008.03.011
  25. Kawaguchi, Y., Miyamoto, Y., Inoue, T. and Kaneda, Y. (2009) Efficient eradication of hormone-resistant human prostate cancers by inactivated Sendai virus particle. Int. J. Cancer 124, 2478-2487. https://doi.org/10.1002/ijc.24234
  26. Sadler, J. and Williams, B. R. G. (2008) Interferon-inducible antiviral effects. Nat. Rev. Immunology. 8, 559-568. https://doi.org/10.1038/nri2314
  27. Platanias, L. C. and Fish, E. N. (1999) Signaling pathways activated by interferons. Exp. Hematol. 11, 1583-1592.
  28. Tanaka, M., Shimbo, T., Kikuchi, Y., Matsuda, M. and Kaneda, Y. (2010) Sterile alpha motif containing domain 9 (SAMD9) is involved in death signaling of malignant glioma treated with inactivated Sendai virus particle (HVJ-E) or type I interferon. Int. J. Cancer 126, 1982-1991.
  29. Ito, M., Yamamoto, S., Nimura, K., Hiraoka, K., Tamai, K. and Kaneda, Y. (2005) Rad51 siRNA delivered by HVJ envelope vector enhances the anticancer effect of cisplatin J. Gene Med. 7, 1044-1052. https://doi.org/10.1002/jgm.753
  30. Blangy, A., Lane, H. A., d'Herin, P., Harper, M., Kress, M. and Nigg, E. A. (1995) Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo. Cell 83, 1159-1169. https://doi.org/10.1016/0092-8674(95)90142-6
  31. Matsuda, M., Yamamoto, T., Matsumura, A. and Kaneda, Y. (2009) Highly efficient eradication of intracranial glioblastoma using Eg5 siRNA combined with HVJ envelope. Gene Ther. 16, 1465-1476. https://doi.org/10.1038/gt.2009.99
  32. Lefranc, F., Cool, V., Velu, T., Brotchi, J. and De Witte, O. (2002) Granulocyte macrophage-colony stimulating factor gene transfer to induce a protective anti-tumoral immune response against the 9 L rat gliosarcoma model. Int. J. Oncol. 20, 1077-1085
  33. Pan, D., Wei, X., Liu, M., Feng, S., Tian, X., Feng, X. and Zhang, X. (2009) Adenovirus mediated transfer of p53, GM-CSF and B7-1 suppresses growth and enhances immunogenicity of glioma cells. Neurol. Res. doi: 10.1179/174313209X455736.
  34. Natsume, A., Mizuno, M., Ryuke, Y. and Yoshida, J. (1999) Antitumor effect and cellular immunity activation by murine interferon-beta gene transfer against intracerebral glioma in mouse. Gene Ther. 6, 1626-1633. https://doi.org/10.1038/sj.gt.3300990
  35. Meijer, D. H., Maguire, C. A., LeRoy, S. G. and Sena-Esteves, M. (2009) Controlling brain tumor growth by intraventricular administration of an AAV vector encoding IFN-beta. Cancer Gene Ther. 16, 664-671. https://doi.org/10.1038/cgt.2009.8
  36. Glick, R. P., Lichtor, T., de Zoeten, E., Deshmukh, P. and Cohen, E. P (1999) Prolongation of survival of mice with glioma treated with semiallogeneic fibroblasts secreting interleukin-2. Neurosurgery 45, 867-874. https://doi.org/10.1097/00006123-199910000-00028
  37. Iwadate, Y., Inoue, M., Saegusa, T., Tokusumi, Y., Kinoh, H., Hasegawa, M., Tagawa, M., Yamaura, A., Shimada, H. (2005) Recombinant Sendai virus vector induces complete remission of established brain tumors through efficient interleukin-2 gene transfer in vaccinated rats. Clin. Cancer Res. 11, 3821-3827. https://doi.org/10.1158/1078-0432.CCR-04-1485
  38. Liu, Y., Ehtesham, M., Samoto, K., Wheeler, C. J., Thompson, R. C., Villarreal, L. P., Black, K. L. and Yu, J. S. (2002) In situ adenoviral interleukin 12 gene transfer confers potent and long-lasting cytotoxic immunity in glioma. Cancer Gene Ther. 9, 9-15. https://doi.org/10.1038/sj.cgt.7700399
  39. Hellums, E. K., Markert, J. M., Parker, J. N., He, B., Perbal, B., Roizman, B., Whitley, R. J., Langford, C. P., Bharara, S. and Gillespie, G. Y. (2005) Increased efficacy of an interleukin-12-secreting herpes simplex virus in a syngeneic intracranial murine glioma model. Neuro. Oncol. 7, 213-224. https://doi.org/10.1215/S1152851705000074
  40. Matsuda, M., Nimura, K., Shimbo, T., Hamasaki, T., Yamamoto, T., Matsumura, A. and Kaneda, Y. (2010) Immunogene therapy using immunomodulating HVJ-E vector augments anti-tumor effects in murine malignant glioma. J. Neurooncol. In press.
  41. Malek, T. R. and Bayer, A. L. (2004) Tolerance, not immunity, crucially depends on IL-2. Nat. Rev. Immunol. 4, 665-674. https://doi.org/10.1038/nri1435
  42. Furtado, G. C., Curotto de Lafaille, M. A., Kutchukhidze, N. and Lafaille, J. J. (2002) Interleukin 2 signaling is required for CD4(+) regulatory T cell function. J. Exp. Med. 196, 851-857. https://doi.org/10.1084/jem.20020190
  43. Kawachi, M., Tamai, K., Saga, K., Yamazaki, T., Fujita, H., Shimbo, T., Nimura, K., Nishifuji, K., Amagai, M., Uitto, J. and Kaneda, Y. (2007) Development of tissue-targeting HVJ envelope vector for successful delivery of therapeutic gene to mouse skin. Hum. Gene Ther. 18, 881-894. https://doi.org/10.1089/hum.2007.046
  44. Shimbo, T., Kawachi, M., Saga, K., Fujita, H., Yamazaki, T., Tamai, K. and Kaneda, Y. (2007) Development of a transferrin receptor-targeting HVJ-E vector. Biochem. Biophys. Res. Comm. 364, 423-428. https://doi.org/10.1016/j.bbrc.2007.09.135
  45. Saga, K., Tamai, K., Kawachi, M., Shimbo, T., Fujita, H., Yamazaki, T. and Kaneda, Y. (2008) Functional modification of Sendai virus by siRNA. J. Biotechnol. 133, 386-394. https://doi.org/10.1016/j.jbiotec.2007.10.003
  46. Kircheis, R. and Wagner, E. (2005) Transferrin receptortargeted gene delivery systems; in Polymeric Gene Delivery Amiji, M. M. (ed.), pp 537-556. CRC Press LLC, Florida, USA.
  47. Sudimack, J. and Lee, R. J. (2000) Targeted drug delivery via the folate receptor. Adv. Drug Deliv. Rev. 41, 147-162. https://doi.org/10.1016/S0169-409X(99)00062-9
  48. Morris, J. C. and Waldmann, T. A. (2009) Antibody-based therapy of leukaemia. Expert Rev. Mol. Med. 11, e29. https://doi.org/10.1017/S1462399409001215
  49. Vallera, D. A, Chen, H., Sicheneder, A. R., Panoskaltsis-Mortari, A. and Taras, E. P. (2009) Genetic alteration of a bispecific ligand-directed toxin targeting human CD19 and CD22 receptors resulting in improved efficacy against systemic B cell malignancy. Leuk. Res. 33, 1233-1242. https://doi.org/10.1016/j.leukres.2009.02.006
  50. van Waarde, A., Rybczynska, A. A, Ramakrishnan, N., Ishiwata, K., Elsinga, P. H. and Dierckx, R. A. (2010) Sigma receptors in oncology: therapeutic and diagnostic applications of sigma ligands. Curr. Pharm. Des. In press.
  51. Chono, S., Li, S. D., Conwell, C. C. and Huang, L. (2008) An efficient and low immunostimulatory nanoparticle formulation for systemic siRNA delivery to the tumor. J. Control Release 131, 64-69. https://doi.org/10.1016/j.jconrel.2008.07.006
  52. Clement, V., Dutoit, V., Marino, D., Dietrich, P. Y. and Radovanovic, I. (2009) Limits of CD133 as a marker of glioma self-renewing cells. Int. J. Cancer 125, 244-248. https://doi.org/10.1002/ijc.24352

Cited by

  1. Anti-tumor effects of inactivated Sendai virus particles with an IL-2 gene on angiosarcoma vol.149, pp.1, 2013, https://doi.org/10.1016/j.clim.2013.05.019
  2. Recent advances and developments in the antitumor effect of the HVJ envelope vector on malignant melanoma: from the bench to clinical application vol.20, pp.11, 2013, https://doi.org/10.1038/cgt.2013.61