DOI QR코드

DOI QR Code

Current advances in adenovirus nanocomplexes: more specificity and less immunogenicity

  • Kang, Eun-Ah (Nanomedical Science, Institute for Cancer Research, Severance Biomedical Science Institute, Yonsei University College of Medicine) ;
  • Yun, Chae-Ok (Nanomedical Science Institute for Cancer Research, Severance Biomedical Science Institute, Yonsei University College of Medicine)
  • Received : 2010.11.23
  • Published : 2010.12.31

Abstract

An often overlooked issue in the field of adenovirus (Ad)-mediated cancer gene therapy is its limited capacity for effective systemic delivery. Although primary tumors can be treated effectively with intralesional injection of conventional Ad vectors, systemic metastasis is difficult to cure. Systemic administration of conventional naked Ads leads to acute accumulation of Ad particles in the liver, induction of neutralizing antibody, short blood circulation half-life, non-specific biodistribution in undesired organs, and low selective accumulation in the target disease site. Versatile strategies involving the modification of viral surfaces with polymers and nanomaterials have been designed for the purpose of maximizing Ad anti-tumor activity and specificity by systemic administration. Integration of viral and non-viral nanomaterials will substantially advance both fields, creating new concepts in gene therapeutics. This review focuses on current advances in the development of smart Ad hybrid nanocomplexes based on various design-based strategies for optimal Ad systemic administration.

Keywords

References

  1. Heise, C., Hermiston, T., Johnson, L., Brooks, G., Sampson-Johannes, A., Williams, A., Hawkins, L. and Kirn, D. (2000) An adenovirus E1A mutant that demonstrates potent and selective systemic anti-tumoral efficacy. Nat. Med. 6, 1134-1139. https://doi.org/10.1038/80474
  2. Kim, J. H., Lee, Y. S., Kim, H., Huang, J. H., Yoon, A. R. and Yun, C. O. (2006) Relaxin expression from tumor-targeting adenoviruses and its intratumoral spread, apoptosis induction, and efficacy. J. Natl. Cancer Inst. 98, 1482-1493. https://doi.org/10.1093/jnci/djj397
  3. Chen, L., Chen, D., Gong, M., Na, M., Li, L., Wu, H., Jiang, L., Qian, Y., Fang, G. and Xue, X. (2009) Concomitant use of Ad5/35 chimeric oncolytic adenovirus with TRAIL gene and taxol produces synergistic cytotoxicity in gastric cancer cells. Cancer Lett. 284, 141-148. https://doi.org/10.1016/j.canlet.2009.04.026
  4. Yoo, J. Y., Kim, J. H., Kim, J., Huang, J. H., Zhang, S. N., Kang, Y. A., Kim, H. and Yun, C. O. (2008) Short hairpin RNA-expressing oncolytic adenovirus-mediated inhibition of IL-8: effects on antiangiogenesis and tumor growth inhibition. Gene Ther. 15, 635-651. https://doi.org/10.1038/gt.2008.3
  5. Zhao, L., Dong, A., Gu, J., Liu, Z., Zhang, Y., Zhang, W., Wang, Y., He, L., Qian, C., Qian, Q. and Liu, X. (2006) The anti-tumor activity of TRAIL and IL-24 with replicating oncolytic adenovirus in colorectal cancer. Cancer Gene Ther. 13, 1011-1022. https://doi.org/10.1038/sj.cgt.7700969
  6. Steinwaerder, D. S., Carlson, C. A., Otto, D. L., Li, Z. Y., Ni, S. and Lieber, A. (2001) Tumor-specific gene expression in hepatic metastases by a replication-activated adenovirus vector. Nat. Med. 7, 240-243. https://doi.org/10.1038/84696
  7. Chengalvala, M. V., Lubeck, M. D., Selling, B. J., Natuk, R. J., Hsu, K. H., Mason, B. B., Chanda, P. K., Bhat, R. A., Bhat, B. M., Mizutani, S. (1991) Adenovirus vectors for gene expression. Curr. Opin. Biotechnol. 2, 718-722. https://doi.org/10.1016/0958-1669(91)90041-3
  8. Alemany, R., Balague, C. and Curiel, D. T. (2000) Replicative adenoviruses for cancer therapy. Nat. Biotechnol. 18, 723-727. https://doi.org/10.1038/77283
  9. Green, N. K., Herbert, C. W., Hale, S. J., Hale, A. B., Mautner, V., Harkins, R., Hermiston, T., Ulbrich, K., Fisher, K. D. and Seymour, L. W. (2004) Extended plasma circulation time and decreased toxicity of polymer-coated adenovirus. Gene Ther. 11, 1256-1263. https://doi.org/10.1038/sj.gt.3302295
  10. Choi, I. K., Lee, Y. S., Yoo, J. Y., Yoon, A. R., Kim, H., Kim, D. S., Seidler, D. G., Kim, J. H. and Yun, C. O. (2010) Effect of decorin on overcoming the extracellular matrix barrier for oncolytic virotherapy. Gene Ther. 17, 190-201. https://doi.org/10.1038/gt.2009.142
  11. Gomes, E. M., Rodrigues, M. S., Phadke, A. P., Butcher, L. D., Starling, C., Chen, S., Chang, D., Hernandez-Alcoceba, R., Newman, J. T., Stone, M. J. and Tong, A. W. (2009) Antitumor activity of an oncolytic adenoviral-CD40 ligand (CD154) transgene construct in human breast cancer cells. Clin. Cancer Res. 15, 1317-1325. https://doi.org/10.1158/1078-0432.CCR-08-1360
  12. Zhang, Y. A., Nemunaitis, J., Samuel, S. K., Chen, P., Shen, Y. and Tong, A. W. (2006) Antitumor activity of an oncolytic adenovirus-delivered oncogene small interfering RNA. Cancer Res. 66, 9736-9743. https://doi.org/10.1158/0008-5472.CAN-06-1617
  13. Khuri, F. R., Nemunaitis, J., Ganly, I., Arseneau, J., Tannock, I. F., Romel, L., Gore, M., Ironside, J., MacDougall, R. H., Heise, C., Randlev, B., Gillenwater, A. M., Bruso, P., Kaye, S. B., Hong, W. K. and Kirn, D. H. (2000) A controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nat. Med. 6, 879-885. https://doi.org/10.1038/78638
  14. Nemunaitis, J., Ganly, I., Khuri, F., Arseneau, J., Kuhn, J., McCarty, T., Landers, S., Maples, P., Romel, L., Randlev, B., Reid, T., Kaye, S. and Kirn, D. (2000) Selective replication and oncolysis in p53 mutant tumors with ONYX-015, an E1B-55kD gene-deleted adenovirus, in patients with advanced head and neck cancer: a phase II trial. Cancer Res. 60, 6359-6366.
  15. Kiang, A., Hartman, Z. C., Everett, R. S., Serra, D., Jiang, H., Frank, M. M. and Amalfitano, A. (2006) Multiple innate inflammatory responses induced after systemic adenovirus vector delivery depend on a functional complement system. Mol. Ther. 14, 588-598. https://doi.org/10.1016/j.ymthe.2006.03.024
  16. Singh, R. and Kostarelos, K. (2009) Designer adenoviruses for nanomedicine and nanodiagnostics. Trends. Biotechnol. 27, 220-229. https://doi.org/10.1016/j.tibtech.2009.01.003
  17. Li, F., Zhang, Z. P., Peng, J., Cui, Z. Q., Pang, D. W., Li, K., Wei, H. P., Zhou, Y. F., Wen, J. K. and Zhang, X. E. (2009) Imaging viral behavior in Mammalian cells with self-assembled capsid-quantum-dot hybrid particles. Small 5, 718-726. https://doi.org/10.1002/smll.200801303
  18. Thompson, D. H. (2008) Adenovirus in a synthetic membrane wrapper: an example of hybrid vigor? ACS Nano 2, 821-826. https://doi.org/10.1021/nn800279s
  19. Fisher, K. D. and Seymour, L. W. (2010) HPMA copolymers for masking and retargeting of therapeutic viruses. Adv. Drug. Deliv. Rev. 62, 240-245. https://doi.org/10.1016/j.addr.2009.12.003
  20. Pearce, O. M., Fisher, K. D., Humphries, J., Seymour, L. W., Smith, A. and Davis, B. G. (2005) Glycoviruses: chemical glycosylation retargets adenoviral gene transfer. Angew. Chem. Int. Ed. Engl. 44, 1057-1061. https://doi.org/10.1002/anie.200461832
  21. Lee, G. K., Maheshri, N., Kaspar, B. and Schaffer, D. V. (2005) PEG conjugation moderately protects adeno-associated viral vectors against antibody neutralization. Biotechnol. Bioeng. 92, 24-34. https://doi.org/10.1002/bit.20562
  22. Jung, Y., Park, H. J., Kim, P. H., Lee, J., Hyung, W., Yang, J., Ko, H., Sohn, J. H., Kim, J. H., Huh, Y. M., Yun, C. O. and Haam, S. (2007) Retargeting of adenoviral gene delivery via Herceptin-PEG-adenovirus conjugates to breast cancer cells. J. Control Release 123, 164-171. https://doi.org/10.1016/j.jconrel.2007.08.002
  23. Hofherr, S. E., Shashkova, E. V., Weaver, E. A., Khare, R. and Barry, M. A. (2008) Modification of adenoviral vectors with polyethylene glycol modulates in vivo tissue tropism and gene expression. Mol. Ther. 16, 1276-1282. https://doi.org/10.1038/mt.2008.86
  24. Yao, X., Yoshioka, Y., Morishige, T., Eto, Y., Watanabe, H., Okada, Y., Mizuguchi, H., Mukai, Y., Okada, N. and Nakagawa, S. (2009) Systemic administration of a PEGylated adenovirus vector with a cancer-specific promoter is effective in a mouse model of metastasis. Gene Ther. 16, 1395-1404. https://doi.org/10.1038/gt.2009.95
  25. Chan, P., Kurisawa, M., Chung, J. E. and Yang, Y. Y. (2007) Synthesis and characterization of chitosan-g-poly(ethylene glycol)-folate as a non-viral carrier for tumor-targeted gene delivery. Biomaterials 28, 540-549. https://doi.org/10.1016/j.biomaterials.2006.08.046
  26. Doronin, K., Shashkova, E. V., May, S. M., Hofherr, S. E. and Barry, M. A. (2009) Chemical modification with high molecular weight polyethylene glycol reduces transduction of hepatocytes and increases efficacy of intravenously delivered oncolytic adenovirus. Hum. Gene Ther. 20, 975-988. https://doi.org/10.1089/hum.2009.028
  27. Eto, Y., Gao, J. Q., Sekiguchi, F., Kurachi, S., Katayama, K., Maeda, M., Kawasaki, K., Mizuguchi, H., Hayakawa, T., Tsutsumi, Y., Mayumi, T. and Nakagawa, S. (2005) PEGylated adenovirus vectors containing RGD peptides on the tip of PEG show high transduction efficiency and antibody evasion ability. J. Gene Med. 7, 604-612. https://doi.org/10.1002/jgm.699
  28. Gao, J. Q., Eto, Y., Yoshioka, Y., Sekiguchi, F., Kurachi, S., Morishige, T., Yao, X., Watanabe, H., Asavatanabodee, R., Sakurai, F., Mizuguchi, H., Okada, Y., Mukai, Y., Tsutsumi, Y., Mayumi, T., Okada, N. and Nakagawa, S. (2007) Effective tumor targeted gene transfer using PEGylated adenovirus vector via systemic administration. J. Control Release 122, 102-110. https://doi.org/10.1016/j.jconrel.2007.06.010
  29. Gressner, A. M. and Pfeiffer, T. (1986) Preventive effects of acute inflammation on liver cell necrosis and inhibition of heparan sulphate synthesis in hepatocytes. J. Clin. Chem. Clin. Biochem. 24, 821-829.
  30. Shayakhmetov, D. M., Li, Z. Y., Ni, S. and Lieber, A. (2004) Analysis of adenovirus sequestration in the liver, transduction of hepatic cells, and innate toxicity after injection of fiber-modified vectors. J. Virol. 78, 5368-5381. https://doi.org/10.1128/JVI.78.10.5368-5381.2004
  31. Barton, K. N., Stricker, H., Kolozsvary, A., Kohl, R., Heisey, G., Nagaraja, T. N., Zhu, G., Lu, M., Kim, J. H., Freytag, S. O. and Brown, S. L. (2006) Polyethylene glycol (molecular weight 400 DA) vehicle improves gene expression of adenovirus mediated gene therapy. J. Urol. 175, 1921-1925. https://doi.org/10.1016/S0022-5347(05)00918-3
  32. Fisher, K. D., Stallwood, Y., Green, N. K., Ulbrich, K., Mautner, V. and Seymour, L. W. (2001) Polymer-coated adenovirus permits efficient retargeting and evades neutralising antibodies. Gene Ther. 8, 341-348. https://doi.org/10.1038/sj.gt.3301389
  33. Green, N. K., Morrison, J., Hale, S., Briggs, S. S., Stevenson, M., Subr, V., Ulbrich, K., Chandler, L., Mautner, V., Seymour, L. W. and Fisher, K. D. (2008) Retargeting polymer-coated adenovirus to the FGF receptor allows productive infection and mediates efficacy in a peritoneal model of human ovarian cancer. J. Gene Med. 10, 280-289. https://doi.org/10.1002/jgm.1121
  34. Lanciotti, J., Song, A., Doukas, J., Sosnowski, B., Pierce, G., Gregory, R., Wadsworth, S. and O'Riordan, C. (2003) Targeting adenoviral vectors using heterofunctional polyethylene glycol FGF2 conjugates. Mol. Ther. 8, 99-107. https://doi.org/10.1016/S1525-0016(03)00139-4
  35. Hofherr, S. E., Mok, H., Gushiken, F. C., Lopez, J. A. and Barry, M. A. (2007) Polyethylene glycol modification of adenovirus reduces platelet activation, endothelial cell activation, and thrombocytopenia. Hum. Gene Ther. 18, 837-848. https://doi.org/10.1089/hum.2007.0051
  36. Ogawara, K., Rots, M. G., Kok, R. J., Moorlag, H. E., Van Loenen, A. M., Meijer, D. K., Haisma, H. J. and Molema, G. (2004) A nsovel strategy to modify adenovirus tropism and enhance transgene delivery to activated vascular endothelial cells in vitro and in vivo. Hum. Gene Ther. 15, 433-443. https://doi.org/10.1089/10430340460745766
  37. Park, J. W., Mok, H. and Park, T. G. (2008) Epidermal growth factor (EGF) receptor targeted delivery of PEGylated adenovirus. Biochem. Biophys. Res. Commun. 366, 769-774. https://doi.org/10.1016/j.bbrc.2007.12.045
  38. Bonsted, A., Engesaeter, B. O., Hogset, A., Maelandsmo, G. M., Prasmickaite, L., D'Oliveira, C., Hennink, W. E., van Steenis, J. H. and Berg, K. (2006) Photochemically enhanced transduction of polymer-complexed adenovirus targeted to the epidermal growth factor receptor. J. Gene Med. 8, 286-297. https://doi.org/10.1002/jgm.853
  39. Morrison, J., Briggs, S. S., Green, N., Fisher, K., Subr, V., Ulbrich, K., Kehoe, S. and Seymour, L. W. (2008) Virotherapy of ovarian cancer with polymer-cloaked adenovirus retargeted to the epidermal growth factor receptor. Mol. Ther. 16, 244-251. https://doi.org/10.1038/sj.mt.6300363
  40. Maeda, M., Kida, S., Hojo, K., Eto, Y., Gaob, J. Q., Kurachi, S., Sekiguchi, F., Mizuguchi, H., Hayakawa, T., Mayumi, T., Nakagawa, S. and Kawasaki, K. (2005) Design and synthesis of a peptide-PEG transporter tool for carrying adenovirus vector into cells. Bioorg. Med. Chem. Lett. 15, 621-624. https://doi.org/10.1016/j.bmcl.2004.11.055
  41. Oh, I. K., Mok, H. and Park, T. G. (2006) Folate immobilized and PEGylated adenovirus for retargeting to tumor cells. Bioconjug. Chem. 17, 721-727. https://doi.org/10.1021/bc060030c
  42. Park, Y., Kang, E., Kwon, O. J., Hwang, T., Park, H., Lee, J. M., Kim, J. H. and Yun, C. O. (2010) Ionically crosslinked Ad/chitosan nanocomplexes processed by electro-spinning for targeted cancer gene therapy. J. Control Release. S0168-3659(10)00475-X [pii] 10.1016/j.jconrel.2010.06.027.
  43. Mok, H., Park, J. W. and Park, T. G. (2008) Enhanced intracellular delivery of quantum dot and adenovirus nanoparticles triggered by acidic pH via surface charge reversal. Bioconjug. Chem. 19, 797-801. https://doi.org/10.1021/bc700464m
  44. Park, J. W., Mok, H. and Park, T. G. (2010) Physical adsorption of PEG grafted and blocked poly-L-lysine copolymers on adenovirus surface for enhanced gene transduction. J. Control Release 142, 238-244. https://doi.org/10.1016/j.jconrel.2009.11.001
  45. Sarkar, D., Lebedeva, I. V., Su, Z. Z., Park, E. S., Chatman, L., Vozhilla, N., Dent, P., Curiel, D. T. and Fisher, P. B. (2007) Eradication of therapy-resistant human prostate tumors using a cancer terminator virus. Cancer Res. 67, 5434-5442. https://doi.org/10.1158/0008-5472.CAN-07-0195
  46. Sarkar, D., Su, Z. Z. and Fisher, P. B. (2006) Unique conditionally replication competent bipartite adenoviruses-cancer terminator viruses (CTV): efficacious reagents for cancer gene therapy. Cell Cycle. 5, 1531-1536. https://doi.org/10.4161/cc.5.14.3095
  47. Kim, P. H., Kim, T. I., Yockman, J. W., Kim, S. W. and Yun, C. O. (2010) The effect of surface modification of adenovirus with an arginine-grafted bioreducible polymer on transduction efficiency and immunogenicity in cancer gene therapy. Biomaterials 31, 1865-1874. https://doi.org/10.1016/j.biomaterials.2009.11.043
  48. Cattaneo, R., Miest, T., Shashkova, E. V. and Barry, M. A. (2008) Reprogrammed viruses as cancer therapeutics: targeted, armed and shielded. Nat. Rev. Microbiol. 6, 529-540. https://doi.org/10.1038/nrmicro1927
  49. Saini, V., Martyshkin, D. V., Mirov, S. B., Perez, A., Perkins, G., Ellisman, M. H., Towner, V. D., Wu, H., Pereboeva, L., Borovjagin, A., Curiel, D. T. and Everts, M. (2008) An adenoviral platform for selective self-assembly and targeted delivery of nanoparticles. Small 4, 262-269. https://doi.org/10.1002/smll.200700403

Cited by

  1. Dual tumor targeting with pH-sensitive and bioreducible polymer-complexed oncolytic adenovirus vol.41, 2015, https://doi.org/10.1016/j.biomaterials.2014.11.021
  2. Linearized oncolytic adenoviral plasmid DNA delivered by bioreducible polymers vol.158, pp.3, 2012, https://doi.org/10.1016/j.jconrel.2011.12.008
  3. Enhancing the therapeutic efficacy of adenovirus in combination with biomaterials vol.33, pp.6, 2012, https://doi.org/10.1016/j.biomaterials.2011.11.020
  4. Evolving lessons on nanomaterial-coated viral vectors for local and systemic gene therapy vol.11, pp.13, 2016, https://doi.org/10.2217/nnm-2016-0060
  5. Aminoclay as a highly effective cationic vehicle for enhancing adenovirus-mediated gene transfer through nanobiohybrid complex formation vol.49, 2017, https://doi.org/10.1016/j.actbio.2016.11.045
  6. Gene delivery via the hybrid vector of recombinant adeno-associated virus and polyethylenimine vol.52, 2014, https://doi.org/10.1016/j.ejps.2013.10.009
  7. Utilizing adenovirus vectors for gene delivery in cancer vol.11, pp.3, 2014, https://doi.org/10.1517/17425247.2014.874414
  8. Polymer-Based Delivery of Glucagon-Like Peptide-1 for the Treatment of Diabetes vol.2012, 2012, https://doi.org/10.5402/2012/340632
  9. Antitumor effects of a dual cancer-specific oncolytic adenovirus on colorectal cancer in vitro and in vivo vol.9, pp.2, 2015, https://doi.org/10.3892/etm.2014.2086
  10. Enhanced anti-tumor efficacy and safety profile of tumor microenvironment-responsive oncolytic adenovirus nanocomplex by systemic administration vol.28, 2015, https://doi.org/10.1016/j.actbio.2015.09.014
  11. Potent antitumor effect of neurotensin receptor-targeted oncolytic adenovirus co-expressing decorin and Wnt antagonist in an orthotopic pancreatic tumor model vol.220, 2015, https://doi.org/10.1016/j.jconrel.2015.10.015
  12. Therapeutic efficacy of a systemically delivered oncolytic adenovirus – Biodegradable polymer complex vol.34, pp.19, 2013, https://doi.org/10.1016/j.biomaterials.2013.03.004
  13. Active targeting of RGD-conjugated bioreducible polymer for delivery of oncolytic adenovirus expressing shRNA against IL-8 mRNA vol.32, pp.22, 2011, https://doi.org/10.1016/j.biomaterials.2011.03.084
  14. Antitumor effect and safety profile of systemically delivered oncolytic adenovirus complexed with EGFR-targeted PAMAM-based dendrimer in orthotopic lung tumor model vol.231, 2016, https://doi.org/10.1016/j.jconrel.2016.02.046
  15. Current advances in developing cationic lipid-based nanoparticles as a vehicle for improving adenoviral gene delivery vol.46, pp.4, 2016, https://doi.org/10.1007/s40005-016-0261-0
  16. Hybrid Nanomaterial Complexes for Advanced Phage-guided Gene Delivery vol.3, 2014, https://doi.org/10.1038/mtna.2014.37
  17. Adeno-associated virus serotype 9 administered systemically after reperfusion preferentially targets cardiomyocytes in the infarct border zone with pharmacodynamics suitable for the attenuation of left ventricular remodeling vol.14, pp.9-10, 2012, https://doi.org/10.1002/jgm.2673