DOI QR코드

DOI QR Code

Soluble expression, purification and the role of C-terminal glycine residues in scorpion toxin BmK AGP-SYPU2

  • Zhang, Rong (School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University) ;
  • Cui, Yong (School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University) ;
  • Zhang, Xi (School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University) ;
  • Yang, Zhuo (School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University) ;
  • Zhao, Yongshan (School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University) ;
  • Song, Yong-Bo (School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University) ;
  • Wu, Chunfu (School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University) ;
  • Zhang, Jinghai (School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University)
  • Received : 2010.10.07
  • Accepted : 2010.11.05
  • Published : 2010.12.31

Abstract

The existence of glycine residues in long-chain scorpion toxins has been well documented. However, their role as analgesics has not been evaluated. To address this issue, we investigated the functional role of glycines in the C-terminal end of Chinese-scorpion toxin from Buthus martensii Karsch (BmK AGP-SYPU2) using site-directed mutagenesis and analgesic activity assays. Recombinant BmK AGP-SYPU2 and its mutants were efficiently expressed in E. coli and purified to homogeneity using immobilized metal ion affinity chromatography (IMAC) and cation exchange chromatography. The mouse-twisting test was used to detect the analgesic activity of BmK AGP-SYPU2 and its mutants. As a result, we identified glycines at the C-terminal end that, when altered, significantly affected analgesic activity. Also, Mut6566 was significantly decreased compared to BmK AGP-SYPU2. These data indicate that the glycines at the C-terminal end are important for the analgesic activity of BmK AGP-SYPU2.

Keywords

References

  1. Possani, L. D., Merino, E., Corona, M., Bolivar, F. and Becerril, B. (2000) Peptides and genes coding for scorpion toxins that affect ion-channels. Biochimie 82, 861-868. https://doi.org/10.1016/S0300-9084(00)01167-6
  2. Goudet, C., Chi, C. W. and Tytgat, J. (2002) An overview of toxins scorpion and genes from the venom of the Asian Buthus martensi Karsch. Toxicon 40, 1239-1258. https://doi.org/10.1016/S0041-0101(02)00142-3
  3. Lipkind, G. M. and Fozzard, H. A. (1997) A model of scorpion toxin binding to voltage-gated $K^+$ channels. J. Membr. Biol. 158, 187-196. https://doi.org/10.1007/s002329900256
  4. Naranjo, D. and Miller, C. (1996) A strongly interacting pair of residues on the contact surface of charybdotoxin and a Shaker $K^+$ channel. Neuron 16, 123-130. https://doi.org/10.1016/S0896-6273(00)80029-X
  5. Menez, A. (1998) Functional architectures of animal toxins: a clue to drug design? Toxicon 36, 1557-1572. https://doi.org/10.1016/S0041-0101(98)00148-2
  6. He, X. L., Li, H. M., Zeng, Z. H., Liu, X. Q., Wang, M and Wang, D. C. (1999) Crystal structures of two $\alpha$-like scorpion toxins: nonproline cis peptide bonds and implications for new binding site selectivity on the sodium channel. J. Mol. Biol. 292, 125-135. https://doi.org/10.1006/jmbi.1999.3036
  7. Kharrat, R., Darbon, H., Rochat, H. and Granier C. (1989) Structure/activity relationships of scorpion alpha-toxins. Multiple residues contribute to the interaction with receptors. Eur. J. Biochem. 181, 381-390. https://doi.org/10.1111/j.1432-1033.1989.tb14735.x
  8. Karbat, I., Frolow, F., Froy, O., Gilles, N., Cohen, L., Turkov, M., Gordon, D. and Gurevit, M. (2004) Molecular basis of the high insecticidal potency of scorpion alpha-toxins. J. Biol. Chem. 279, 31679-31686. https://doi.org/10.1074/jbc.M402048200
  9. Zilberberg, N., Gordon, D., Pelhate, M., Adams, M. E., Norris, T. M., Zlotkin, E. and Gurevitz. M. (1996) Functional expression and genetic alteration of an alpha scorpion neurotoxin. Biochemistry 35, 10215-10222. https://doi.org/10.1021/bi9528309
  10. Zilberberg, N., Froy, O., Loret, E., Cestele, S., Arad, D., Gordon, D. and Gurevitz, M. (1997) Identification of structural elements of a scorpion alpha-neurotoxin important for receptor site recognition. J. Biol. Chem. 272, 14810-14816. https://doi.org/10.1074/jbc.272.23.14810
  11. Sun, Y. M., Liu, W., Zhu, R. H., Goudet, C., Tytgat, J. and Wang, D. C. (2002) Roles of disulfide bridges in scorpion toxin BmK M1 analyzed by mutagenesis. J. Pept. Res. 60, 247-256. https://doi.org/10.1034/j.1399-3011.2002.21021.x
  12. Sun, Y. M., Bosmans, F., Zhu, R. H., Goudet, C., Xiong, Y. M., Tytgat, J. and Wang, D. C. (2003) Importance of the conserved aromatic residues in the scorpion alpha-like toxin BmK M1: the hydrophobic surface region revisited. J. Biol. Chem. 278, 24125-24131. https://doi.org/10.1074/jbc.M211931200
  13. Wang, C. G., Gilles, N., Hamon, A., Le Gall, F., Stankiewicz, M., Pelhate, M., Xiong, Y. M., Wang, D. C. and Chi, C. W. (2003) Exploration of the functional site of a scorpion alpha-like toxin by site-directed mutagenesis. Biochemistry 42, 4699-4708. https://doi.org/10.1021/bi0270438
  14. Cui, Y., Guo, G. L., Ma, L., Hu, N., Song, Y. B., Liu, Y. F, Wu, C. F. and Zhang, J. H. (2010) Structure and function relationship of toxin from Chinese scorpion Buthus martensii Karsch (BmK AGAP): gaining insight into related sites of analgesic activity. Peptides 31, 995-1000. https://doi.org/10.1016/j.peptides.2010.03.017
  15. Ma, R., Cui, Y., Zhou, Y., Bao, Y. M., Yang, W. Y., Liu, Y. F, Wu, C. F. and Zhang, J. H. (2010) Location of the analgesic domain in scorpion toxin BmK AGAP by mutagenesis of disulfide bridges. Biochem. Biophys. Res. Commun. 394, 330-334. https://doi.org/10.1016/j.bbrc.2010.02.179
  16. Zhu, J., Tong, X. T., Cao, C. Y., Wu, G., Zhang, N. X. and Wu, H. M. (2010) Solution structure of BmK ${\alpha}Tx11$, a tox in from the venom of the Chinese scorpion Buthus martensii Karsch. Biochem. Biophys. Res. Commun. 391, 627-633. https://doi.org/10.1016/j.bbrc.2009.11.110
  17. Guex, N. and Peitsch, M. C. (1997) SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis 18, 2714-2723. https://doi.org/10.1002/elps.1150181505
  18. Laskowski, R. A., MacArthur, M. W., Moss, D. S. and Thornton, J. M. (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283-291. https://doi.org/10.1107/S0021889892009944
  19. Fiordalisi, J. J., Fetter, C. H., TenHarmsel, A., Gigowski, R., Chiappinelli, V. A. and Grant, G. A. (1991) Synthesis and expression in Escherichia coli of a gene for kappa-bungarotoxin. Biochemistry 30, 10337-10343. https://doi.org/10.1021/bi00106a035
  20. Bessette, P. H., Aslund, F., Beckwith, J. and Georgiou, G. (1999) Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm. Proc. Natl. Acad. Sci. U.S.A. 96, 13703-13708. https://doi.org/10.1073/pnas.96.24.13703
  21. Liu, Z., Yang, G. Z., Li, B. L., Chi, C. W. and Wu, X. F. (2003) Cloning, Co-Expression with an Amidating Enzyme, and Activity of the Scorpion Toxin BmK ITa1 cDNA in Insect Cells. Mol. Biotechnol. 24, 21-26. https://doi.org/10.1385/MB:24:1:21
  22. Gurevitz, M., Gordon, D., Ben-Natan, S., Turkov, M. and Froy, O. (2001) Diversification of neurotoxins by C-tail ‘wiggling’: a scorpion recipe for survival. FASEB J. 15, 1201-1205. https://doi.org/10.1096/fj.00-0571hyp
  23. Blanc, E., Sabatier, J. M., Kharrat, R., Meunier, S., el Ayeb, M., Van Rietschoten, J. and Darbon, H. (1997) Solution structure of maurotoxin, a scorpion toxin from Scorpio maurus, with high affinity for voltage-gated potassium channels. Proteins 29, 321-333. https://doi.org/10.1002/(SICI)1097-0134(199711)29:3<321::AID-PROT6>3.0.CO;2-D
  24. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  25. Fennessy, M. R. and Lee, J. R. (1975) Methods in Narcotics Research. pp 76-79, Marcel Dekker, N.Y, USA.

Cited by

  1. The role of glycine residues at the C-terminal peptide segment in antinociceptive activity: a molecular dynamics simulation vol.19, pp.3, 2013, https://doi.org/10.1007/s00894-012-1666-y
  2. Site-Directed Mutagenesis of BmK AGP-SYPU1: The Role of Two Conserved Tyr (Tyr5 and Tyr42) in Analgesic Activity vol.33, pp.2, 2014, https://doi.org/10.1007/s10930-014-9547-0
  3. The role of Ser54 in the antinociceptive activity of BmK9, a neurotoxin from the scorpion Buthus martensii Karsch vol.58, pp.6-7, 2011, https://doi.org/10.1016/j.toxicon.2011.08.014
  4. Biochemical characterization of ferredoxin-NADP+ reductase interaction with flavodoxin in Pseudomonas putida vol.45, pp.8, 2012, https://doi.org/10.5483/BMBRep.2012.45.8.071