DOI QR코드

DOI QR Code

Fluridone affects quiescent centre division in the Arabidopsis thaliana root stem cell niche

  • Han, Woong (Department of Medical Biotechnology, College of Biomedical Science, Kangwon National University) ;
  • Zhang, Hanma (Centre for Plant Sciences, Institute of Integrative and Comparative Biology (IICB), Faculty of Biological Sciences, University of Leeds) ;
  • Wang, Myeong-Hyeon (Department of Medical Biotechnology, College of Biomedical Science, Kangwon National University)
  • Received : 2010.10.04
  • Accepted : 2010.11.10
  • Published : 2010.12.31

Abstract

Plants undergo cell division throughout their life in order to maintain their growth. It is well known that root and shoot tip of plants possess meristems, which contain quiescent cells. Fluridone (1-methyl-3-phenyl-5-(3-trifluromethyl (phenyl))-4-(1H)-pyridinone) is an established inhibitor of both ABA and carotenoid biosynthesis. However, the other functions of fluridone remain undiscovered. In this report, we provide experimental evidence that fluridone plays a role in the division of the quiescent centre of the Arabidopsis root meristem. This study examined the effects of exogenous fluridone and ABA on the development of the stem cell niche in Arabidopsis root. We show that fluridone promoted the division of stem cells in the quiescent centre, whereas exogenous ABA suppressed quiescent centre division. Furthermore, we established a novel regulatory function for fluridone by demonstrating that it plays an important role in postembryonic development.

Keywords

References

  1. Dolan, L., Janmaat, K., Willemsen, V., Linstead, P., Poethig, S., Roberts, K. and Scheres, B. (1993) Cellular organization of the Arabidopsis root. Development 119, 71-84.
  2. Wildwater, M., Campilho, A., Perez-Perez, J. M., Heidstra, R., Blilou, I., Korthout, H., Chatterjee, J., Mariconti, L., Gruissem, W. and Scheres, B. (2005) The RETINOBLASTOMA-RELATED gene regulates stem cell maintenance in Arabidopsis roots. Cell 29, 1337-1349.
  3. van den Berg, C., Willemsen, V., Hendriks, G., Weisbeek, P. and Scheres, B. (1997) Short-range control of cell differentiation in the Arabidopsis root meristem. Nature 390, 287-289. https://doi.org/10.1038/36856
  4. Kidner, C., Sundaresan, V., Roberts, K. and Dolan, L. (2000) Clonal analysis of the Arabidopsis root confirms that position, not lineage, determines cell fate. Planta 211, 191-199. https://doi.org/10.1007/s004250000284
  5. Stahl, Y. and Simon. R. (2005) Plant stem cell niches. Int. J. Dev. Biol. 49, 479-489. https://doi.org/10.1387/ijdb.041929ys
  6. Benfey, P. N., Linstead, P. J., Roberts, K., Schiefelbein, J. W., Hauser, M. T. and Aeschbacher. R. A. (1993) Root development in Arabidopsis: four mutants with dramatically altered root morphogenesis. Development 119, 57-70.
  7. Scheres, B., Laurenzio, L. D., Willemsen, V., Hauser, M. T., Janmaat, K., Weisbeek, P. and Benfey. P. N. (1995) Mutations affecting the radial organization of the Arabidopsis root display specific defects throughout the radial axis. Development 121, 53-62.
  8. Haecker, A., Gross-Hardt, R., Geiges, B., Sarkar, A., Breuninger, H., Herrmann, M. and Laux, T. (2004) Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana. Development 131, 657-668. https://doi.org/10.1242/dev.00963
  9. Sarkar, A. K., Luijten, M., Miyashima, S., Lenhard, M., Hashimoto, T., Nakajima, K., Scheres, B., Heidstra, R. and Laux, T. (2007) Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organisers. Nature 446, 811-814. https://doi.org/10.1038/nature05703
  10. Thomann, A., Lechner, E., Hansen, M., Dumbliauskas, E., Parmentier, Y., Kieber, J., Scheres, B. and Genschik. P. (2009) Arabidopsis CULLIN3 genes regulate primary root growth and patterning by ethylene-dependent and -independent mechanisms. PLoS Genet. 5, doi:10.1371/journal.pgen.1000328.
  11. Ortega-Martinez, O., Pernas, M., Carol, R. J. and Dolan, L. (2007) Ethylene modulates stem cell division in the Arabidopsis thaliana root. Science 317, 507-510. https://doi.org/10.1126/science.1143409
  12. Seo, M. and Koshiba. T. (2002) Complex regulation of ABA biosynthesis in plants. Trends Plant Sci. 7, 41-48. https://doi.org/10.1016/S1360-1385(01)02187-2
  13. Chinnusamy, V., Gong, Z. and Zhu, J. K. (2008) Abscisic acid-mediated epigenetic processes in plant development and stress responses. J. Integr. Plant Biol. 50, 1187-1195. https://doi.org/10.1111/j.1744-7909.2008.00727.x
  14. Wan, X. R. and Li, L. (2006) Regulation of ABA level and water-stress tolerance of Arabidopsis by ectopic expression of a peanut 9-cis-epoxycarotenoid dioxygenase gene. Biochem. Biophys. Res. Commun. 347, 1030-1038. https://doi.org/10.1016/j.bbrc.2006.07.026
  15. De Smet, I., Signora, L., Beeckman, T., Inze, D., Foyer, C. H. and Zhang, H. (2003) An abscisic acid-sensitive checkpoint in lateral root development of Arabidopsis. The Plant J. 33, 543-555. https://doi.org/10.1046/j.1365-313X.2003.01652.x
  16. Fukaki, H., Okushima, Y. and Tasaka, M. (2007) Auxin-mediated lateral root formation in higher plants. Int. Rev. Cytol. 256, 111-137. https://doi.org/10.1016/S0074-7696(07)56004-3
  17. Fukaki, H. and Tasaka. M. (2009) Hormone interactions during lateral root formation. Plant Mol. Biol. 69, 437-449. https://doi.org/10.1007/s11103-008-9417-2
  18. Bartels, P. G. and Watson, C. W. (1978) Inhibition of carotenoid synthesis by fluridone and norflurazon. Weed Sci. 26, 198-203.
  19. Fong, F. J. and Schiff, A. (1979) Blue-light-induced absorbance changes associated with carrotenoids in Euglena. Planta 146, 119-127. https://doi.org/10.1007/BF00388221
  20. Di Laurenzio, L., Wysockadiller, J., Malamy, J. E., Pysh, L., Helariutta, Y., Freshour, G., Hahn, M. G., Feldmann, K. A. and Benfey, P. N. (1996) The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell 86, 423-433. https://doi.org/10.1016/S0092-8674(00)80115-4
  21. Nakajima, K., Sena, G., Nawy, T. and Benfey, P. N. (2001) Intercellular movement of the putative transcription factor SHR in root patterning. Nature 413, 307-311. https://doi.org/10.1038/35095061
  22. Sack, F. D. (1997) Plastids and gravitropic sensing. Planta 203, S63-S68 https://doi.org/10.1007/PL00008116
  23. Blancaflor, E. B., Fasano, J. M. and Gilroy, S. (1998) Mapping the functional roles of cap cells in the response of Arabidopsis primary roots to gravity. Plant Physiol. 116, 213-222. https://doi.org/10.1104/pp.116.1.213
  24. van den Berg, C., Weisbeek, P. and Scheres, B. (1998) Cell fate and cell differentiation status in the Arabidopsis root. Planta 205, 483-491. https://doi.org/10.1007/s004250050347
  25. Koornneef, M., Jorna, M. L., Brinkhorst-van der Swan, D. L. C. and Karssen, C. M. (1982) The isolation of abscisic acid (ABA) deficient mutants by selection of induced revertants in non-germinating gibberellin sensitive lines of Arabidopsis thaliana (L.) heynh. Theor. Appl. Genet. 61, 385-393.

Cited by

  1. Hormonal control of cell division and elongation along differentiation trajectories in roots vol.65, pp.10, 2014, https://doi.org/10.1093/jxb/ert485
  2. Rootin, a compound that inhibits root development through modulating PIN-mediated auxin distribution vol.233, 2015, https://doi.org/10.1016/j.plantsci.2015.01.007