DOI QR코드

DOI QR Code

Epigenetic modification of retinoic acid-treated human embryonic stem cells

  • Cheong, Hyun-Sub (Department of Genetic Epidemiology, SNP Genetics, Inc.) ;
  • Lee, Han-Chul (Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Park, Byung-Lae (Department of Genetic Epidemiology, SNP Genetics, Inc.) ;
  • Kim, Hye-Min (Department of Biological Sciences and Center for Stem Cell Differentiation, Korean Advanced Institute of Science and Technology) ;
  • Jang, Mi-Jin (Department of Biological Sciences and Center for Stem Cell Differentiation, Korean Advanced Institute of Science and Technology) ;
  • Han, Yong-Mahn (Department of Biological Sciences and Center for Stem Cell Differentiation, Korean Advanced Institute of Science and Technology) ;
  • Kim, Seun-Young (Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Yong-Sung (Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Shin, Hyoung-Doo (Department of Genetic Epidemiology, SNP Genetics, Inc.)
  • Received : 2010.06.18
  • Accepted : 2010.10.25
  • Published : 2010.12.31

Abstract

Epigenetic modification of the genome through DNA methylation is the key to maintaining the differentiated state of human embryonic stem cells (hESCs), and it must be reset during differentiation by retinoic acid (RA) treatment. A genome-wide methylation/gene expression assay was performed in order to identify epigenetic modifications of RA-treated hESCs. Between undifferentiated and RA-treated hESCs, 166 differentially methylated CpG sites and 2,013 differentially expressed genes were discovered. Combined analysis of methylation and expression data revealed that 19 genes (STAP2, VAMP8, C10orf26, WFIKKN1, ELF3, C1QTNF6, C10orf10, MRGPRF, ARSE, LSAMP, CENTD3, LDB2, POU5F1, GSPT2, THY1, ZNF574, MSX1, SCMH1, and RARB) were highly correlated with each other. The results provided in this study will facilitate future investigations into the interplay between DNA methylation and gene expression through further functional and biological studies.

Keywords

References

  1. Chambon, P. (1996) A decade of molecular biology of retinoic acid receptors. Faseb J. 10, 940-954. https://doi.org/10.1096/fasebj.10.9.8801176
  2. Soprano, D. R., Teets, B. W. and Soprano, K. J. (2007) Role of retinoic acid in the differentiation of embryonal carcinoma and embryonic stem cells. Vitam. Horm. 75, 69-95. https://doi.org/10.1016/S0083-6729(06)75003-8
  3. Lewis, J. D., Meehan, R. R., Henzel, W. J., Maurer-Fogy, I., Jeppesen, P., Klein, F. and Bird, A. (1992) Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell 69, 905-914. https://doi.org/10.1016/0092-8674(92)90610-O
  4. Lee, J. H. and Skalnik, D. G. (2002) CpG-binding protein is a nuclear matrix- and euchromatin-associated protein localized to nuclear speckles containing human trithorax. Identification of nuclear matrix targeting signals. J. Biol. Chem. 277, 42259-42267. https://doi.org/10.1074/jbc.M205054200
  5. Tate, P. H. and Bird, A. P. (1993) Effects of DNA methylation on DNA-binding proteins and gene expression. Curr. Opin. Genet. Dev. 3, 226-231. https://doi.org/10.1016/0959-437X(93)90027-M
  6. Adewumi, O., Aflatoonian, B., Ahrlund-Richter, L., Amit, M., Andrews, P. W., Beighton, G., Bello, P. A., Benvenisty, N., Berry, L. S., Bevan, S., Blum, B., Brooking, J., Chen, K. G., Choo, A. B., Churchill, G. A., Corbel, M., Damjanov, I., Draper, J. S., Dvorak, P., Emanuelsson, K., Fleck, R. A., Ford, A., Gertow, K., Gertsenstein, M., Gokhale, P. J., Hamilton, R. S., Hampl, A., Healy, L. E., Hovatta, O., Hyllner, J., Imreh, M. P., Itskovitz-Eldor, J., Jackson, J., Johnson, J. L., Jones, M., Kee, K., King, B. L., Knowles, B. B., Lako, M., Lebrin, F., Mallon, B. S., Manning, D., Mayshar, Y., McKay, R. D., Michalska, A. E., Mikkola, M., Mileikovsky, M., Minger, S. L., Moore, H. D., Mummery, C. L., Nagy, A., Nakatsuji, N., O'Brien, C. M., Oh, S. K., Olsson, C., Otonkoski, T., Park, K. Y., Passier, R., Patel, H., Patel, M., Pedersen, R., Pera, M. F., Piekarczyk, M. S., Pera, R. A., Reubinoff, B. E., Robins, A. J., Rossant, J., Rugg-Gunn, P., Schulz, T. C., Semb, H., Sherrer, E. S., Siemen, H., Stacey, G. N., Stojkovic, M., Suemori, H., Szatkiewicz, J., Turetsky, T., Tuuri, T., van den Brink, S., Vintersten, K., Vuoristo, S., Ward, D., Weaver, T. A., Young, L. A. and Zhang, W. (2007) Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat. Biotechnol. 25, 803-816. https://doi.org/10.1038/nbt1318
  7. Andrews, P. W., Benvenisty, N., McKay, R., Pera, M. F., Rossant, J., Semb, H. and Stacey, G. N. (2005) The International Stem Cell Initiative: toward benchmarks for human embryonic stem cell research. Nat. Biotechnol. 23, 795-797. https://doi.org/10.1038/nbt0705-795
  8. Bibikova, M., Chudin, E., Wu, B., Zhou, L., Garcia, E. W., Liu, Y., Shin, S., Plaia, T. W., Auerbach, J. M., Arking, D. E., Gonzalez, R., Crook, J., Davidson, B., Schulz, T. C., Robins, A., Khanna, A., Sartipy, P., Hyllner, J., Vanguri, P., Savant-Bhonsale, S., Smith, A. K., Chakravarti, A., Maitra, A., Rao, M., Barker, D. L., Loring, J. F. and Fan, J. B. (2006) Human embryonic stem cells have a unique epigenetic signature. Genome Res. 16, 1075-1083. https://doi.org/10.1101/gr.5319906
  9. Liu, Y., Shin, S., Zeng, X., Zhan, M., Gonzalez, R., Mueller, F. J., Schwartz, C. M., Xue, H., Li, H., Baker, S. C., Chudin, E., Barker, D. L., McDaniel, T. K., Oeser, S., Loring, J. F., Mattson, M. P. and Rao, M. S. (2006) Genome wide profiling of human embryonic stem cells (hESCs), their derivatives and embryonal carcinoma cells to develop base profiles of U.S. Federal government approved hESC lines. BMC Dev. Biol. 6, 20. https://doi.org/10.1186/1471-213X-6-20
  10. Loring, J. F. and Rao, M. S. (2006) Establishing standards for the characterization of human embryonic stem cell lines. Stem Cells 24, 145-150. https://doi.org/10.1634/stemcells.2005-0432
  11. Brunner, A. L., Johnson, D. S., Kim, S. W., Valouev, A., Reddy, T. E., Neff, N. F., Anton, E., Medina, C., Nguyen, L., Chiao, E., Oyolu, C. B., Schroth, G. P., Absher, D. M., Baker, J. C. and Myers, R. M. (2009) Distinct DNA methylation patterns characterize differentiated human embryonic stem cells and developing human fetal liver. Genome Res. 19, 1044-1056. https://doi.org/10.1101/gr.088773.108
  12. Rodolfa, K., Di Giorgio, F. P. and Sullivan, S. (2007) Defined reprogramming: a vehicle for changing the differentiated state. Differentiation 75, 577-579. https://doi.org/10.1111/j.1432-0436.2007.00213.x
  13. Abeyta, M. J., Clark, A. T., Rodriguez, R. T., Bodnar, M. S., Pera, R. A. and Firpo, M. T. (2004) Unique gene expression signatures of independently-derived human embryonic stem cell lines. Hum. Mol. Genet. 13, 601-608. https://doi.org/10.1093/hmg/ddh068
  14. Shiota, K., Kogo, Y., Ohgane, J., Imamura, T., Urano, A., Nishino, K., Tanaka, S. and Hattori, N. (2002) Epigenetic marks by DNA methylation specific to stem, germ and somatic cells in mice. Genes Cells 7, 961-969. https://doi.org/10.1046/j.1365-2443.2002.00574.x
  15. Hattori, N., Nishino, K., Ko, Y. G., Hattori, N., Ohgane, J., Tanaka, S. and Shiota, K. (2004) Epigenetic control of mouse Oct-4 gene expression in embryonic stem cells and trophoblast stem cells. J. Biol. Chem. 279, 17063-17069. https://doi.org/10.1074/jbc.M309002200
  16. Hattori, N., Imao, Y., Nishino, K., Hattori, N., Ohgane, J., Yagi, S., Tanaka, S. and Shiota, K. (2007) Epigenetic regulation of Nanog gene in embryonic stem and trophoblast stem cells. Genes Cells 12, 387-396. https://doi.org/10.1111/j.1365-2443.2007.01058.x
  17. Zvetkova, I., Apedaile, A., Ramsahoye, B., Mermoud, J. E., Crompton, L. A., John, R., Feil, R. and Brockdorff, N. (2005) Global hypomethylation of the genome in XX embryonic stem cells. Nat. Genet. 37, 1274-1279. https://doi.org/10.1038/ng1663
  18. Toyota, M., Sasaki, Y., Satoh, A., Ogi, K., Kikuchi, T., Suzuki, H., Mita, H., Tanaka, N., Itoh, F., Issa, J. P., Jair, K. W., Schuebel, K. E., Imai, K. and Tokino, T. (2003) Epigenetic inactivation of CHFR in human tumors. Proc. Natl. Acad. Sci. U.S.A. 100, 7818-7823. https://doi.org/10.1073/pnas.1337066100
  19. Yu, X., Minter-Dykhouse, K., Malureanu, L., Zhao, W. M., Zhang, D., Merkle, C. J., Ward, I. M., Saya, H., Fang, G., van Deursen, J. and Chen, J. (2005) Chfr is required for tumor suppression and Aurora A regulation. Nat. Genet. 37, 401-406. https://doi.org/10.1038/ng1538
  20. Sauter, C. N., McDermid, R. L., Weinberg, A. L., Greco, T. L., Xu, X., Murdoch, F. E. and Fritsch, M. K. (2005) Differentiation of murine embryonic stem cells induces progesterone receptor gene expression. Exp. Cell Res. 311, 251-264. https://doi.org/10.1016/j.yexcr.2005.09.005
  21. Tsuneyoshi, N., Sumi, T., Onda, H., Nojima, H., Nakatsuji, N. and Suemori, H. (2008) PRDM14 suppresses expression of differentiation marker genes in human embryonic stem cells. Biochem. Biophys. Res. Commun. 367, 899-905. https://doi.org/10.1016/j.bbrc.2007.12.189
  22. Sekine, Y., Tsuji, S., Ikeda, O., Sugiyma, K., Oritani, K., Shimoda, K., Muromoto, R., Ohbayashi, N., Yoshimura, A. and Matsuda, T. (2007) Signal-transducing adaptor protein-2 regulates integrin-mediated T cell adhesion through protein degradation of focal adhesion kinase. J. Immunol. 179, 2397-2407. https://doi.org/10.4049/jimmunol.179.4.2397
  23. Sander, L. E., Frank, S. P., Bolat, S., Blank, U., Galli, T., Bigalke, H., Bischoff, S. C. and Lorentz, A. (2008) Vesicle associated membrane protein (VAMP)-7 and VAMP-8, but not VAMP-2 or VAMP-3, are required for activation-induced degranulation of mature human mast cells. Eur. J. Immunol. 38, 855-863. https://doi.org/10.1002/eji.200737634
  24. Niwa, H., Miyazaki, J. and Smith, A. G. (2000) Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat. Genet. 24, 372-376. https://doi.org/10.1038/74199
  25. Pesce, M., Gross, M. K. and Scholer, H. R. (1998) In line with our ancestors: Oct-4 and the mammalian germ. Bioessays. 20, 722-732. https://doi.org/10.1002/(SICI)1521-1878(199809)20:9<722::AID-BIES5>3.0.CO;2-I
  26. Yeo, S., Jeong, S., Kim, J., Han, J. S., Han, Y. M. and Kang, Y. K. (2007) Characterization of DNA methylation change in stem cell marker genes during differentiation of human embryonic stem cells. Biochem. Biophys. Res. Commun. 359, 536-542. https://doi.org/10.1016/j.bbrc.2007.05.120
  27. Deb-Rinker, P., Ly, D., Jezierski, A., Sikorska, M. and Walker, P. R. (2005) Sequential DNA methylation of the Nanog and Oct-4 upstream regions in human NT2 cells during neuronal differentiation. J. Biol. Chem. 280, 6257-6260. https://doi.org/10.1074/jbc.C400479200
  28. Wang, J., Rao, S., Chu, J., Shen, X., Levasseur, D. N., Theunissen, T. W. and Orkin, S. H. (2006) A protein interaction network for pluripotency of embryonic stem cells. Nature 444, 364-368. https://doi.org/10.1038/nature05284
  29. Boyer, L. A., Lee, T. I., Cole, M. F., Johnstone, S. E., Levine, S. S., Zucker, J. P., Guenther, M. G., Kumar, R. M., Murray, H. L., Jenner, R. G., Gifford, D. K., Melton, D. A., Jaenisch, R. and Young, R. A. (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947-956. https://doi.org/10.1016/j.cell.2005.08.020
  30. Lung, H. L., Bangarusamy, D. K., Xie, D., Cheung, A. K., Cheng, Y., Kumaran, M. K., Miller, L., Liu, E. T., Guan, X. Y., Sham, J. S., Fang, Y., Li, L., Wang, N., Protopopov, A. I., Zabarovsky, E. R., Tsao, S. W., Stanbridge, E. J. and Lung, M. L. (2005) THY1 is a candidate tumour suppressor gene with decreased expression in metastatic nasopharyngeal carcinoma. Oncogene 24, 6525-6532. https://doi.org/10.1038/sj.onc.1208812
  31. Sanders, Y. Y., Pardo, A., Selman, M., Nuovo, G. J., Tollefsbol, T. O., Siegal, G. P. and Hagood, J. S. (2008) Thy-1 promoter hypermethylation: a novel epigenetic pathogenic mechanism in pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 39, 610-618. https://doi.org/10.1165/rcmb.2007-0322OC
  32. Shen, S., van den Brink, C. E., Kruijer, W. and van der Saag, P. T. (1992) Embryonic stem cells stably transfected with mRAR beta 2-lacZ exhibit specific expression in chimeric embryos. Int. J. Dev. Biol. 36, 465-476.
  33. Qiu, H., Lotan, R., Lippman, S. M. and Xu, X. C. (2000) Lack of correlation between expression of retinoic acid receptor-beta and loss of heterozygosity on chromosome band 3p24 in esophageal cancer. Genes. Chromosomes. Cancer 28, 196-202. https://doi.org/10.1002/(SICI)1098-2264(200006)28:2<196::AID-GCC8>3.0.CO;2-L
  34. De Larco, J. E., Wuertz, B. R., Yee, D., Rickert, B. L. and Furcht, L. T. (2003) Atypical methylation of the interleukin-8 gene correlates strongly with the metastatic potential of breast carcinoma cells. Proc. Natl. Acad. Sci. U.S.A. 100, 13988-13993. https://doi.org/10.1073/pnas.2335921100
  35. Kelavkar, U. P., Harya, N. S., Hutzley, J., Bacich, D. J., Monzon, F. A., Chandran, U., Dhir, R. and O'Keefe, D. S. (2007) DNA methylation paradigm shift: 15-lipoxygenase-1 upregulation in prostatic intraepithelial neoplasia and prostate cancer by atypical promoter hypermethylation. Prostaglandins Other Lipid. Mediat. 82, 185-197. https://doi.org/10.1016/j.prostaglandins.2006.05.015
  36. Ball, M. P., Li, J. B., Gao, Y., Lee, J. H., LeProust, E. M., Park, I. H., Xie, B., Daley, G. Q. and Church, G. M. (2009) Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells. Nat. Biotechnol. 27, 361-368. https://doi.org/10.1038/nbt.1533
  37. Hellman, A. and Chess, A. (2007) Gene body-specific methylation on the active X chromosome. Science 315, 1141-1143. https://doi.org/10.1126/science.1136352
  38. Lee, T. F., Zhai, J. and Meyers, B. C. (2010) Conservation and divergence in eukaryotic DNA methylation. Proc. Natl. Acad. Sci. U.S.A. 107, 9027-9028. https://doi.org/10.1073/pnas.1005440107
  39. Oh, S. K., Kim, H. S., Ahn, H. J., Seol, H. W., Kim, Y. Y., Park, Y. B., Yoon, C. J., Kim, D. W., Kim, S. H. and Moon, S. Y. (2005) Derivation and characterization of new human embryonic stem cell lines: SNUhES1, SNUhES2, and SNUhES3. Stem. Cells 23, 211-219. https://doi.org/10.1634/stemcells.2004-0122
  40. Xu, C., Inokuma, M. S., Denham, J., Golds, K., Kundu, P., Gold, J. D. and Carpenter, M. K. (2001) Feeder-free growth of undifferentiated human embryonic stem cells. Nat. Biotechnol. 19, 971-974. https://doi.org/10.1038/nbt1001-971
  41. Chudin, E., Kruglyak, S., Baker, S. C., Oeser, S., Barker, D. and McDaniel, T. K. (2006) A model of technical variation of microarray signals. J. Comput. Biol. 13, 996-1003. https://doi.org/10.1089/cmb.2006.13.996
  42. Bibikova, M., Lin, Z., Zhou, L., Chudin, E., Garcia, E. W., Wu, B., Doucet, D., Thomas, N. J., Wang, Y., Vollmer, E., Goldmann, T., Seifart, C., Jiang, W., Barker, D. L., Chee, M. S., Floros, J. and Fan, J. B. (2006) High-throughput DNA methylation profiling using universal bead arrays. Genome Res. 16, 383-393. https://doi.org/10.1101/gr.4410706
  43. Lapointe, J., Li, C., Higgins, J. P., van de Rijn, M., Bair, E., Montgomery, K., Ferrari, M., Egevad, L., Rayford, W., Bergerheim, U., Ekman, P., DeMarzo, A. M., Tibshirani, R., Botstein, D., Brown, P. O., Brooks, J. D. and Pollack, J. R. (2004) Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proc. Natl. Acad. Sci. U.S.A. 101, 811-816. https://doi.org/10.1073/pnas.0304146101

Cited by

  1. Considering Maternal Dietary Modulators for Epigenetic Regulation and Programming of the Fetal Epigenome vol.7, pp.4, 2015, https://doi.org/10.3390/nu7042748
  2. Nutritional influences on epigenetics and age-related disease vol.71, pp.01, 2012, https://doi.org/10.1017/S0029665111003302
  3. WFIKKN1 and WFIKKN2: “Companion” proteins regulating TGFB activity vol.32, 2016, https://doi.org/10.1016/j.cytogfr.2016.06.003
  4. Characterization of Transcriptional Repressor Gene MSX1 Variations for Possible Associations with Congenital Heart Diseases vol.10, pp.11, 2015, https://doi.org/10.1371/journal.pone.0142666
  5. One-carbon metabolism and epigenetics vol.54, 2017, https://doi.org/10.1016/j.mam.2016.11.007
  6. An enigma: why vitamin A supplementation does not always reduce mortality even though vitamin A deficiency is associated with increased mortality vol.44, pp.3, 2015, https://doi.org/10.1093/ije/dyv117
  7. Vitamin A and the epigenome vol.57, pp.11, 2017, https://doi.org/10.1080/10408398.2015.1060940
  8. Genome-wide methylation profiling identifies hypermethylated biomarkers in high-grade cervical intraepithelial neoplasia vol.7, pp.11, 2012, https://doi.org/10.4161/epi.22301
  9. Retinoic acid receptor signaling preserves tendon stem cell characteristics and prevents spontaneous differentiation in vitro vol.7, pp.1, 2016, https://doi.org/10.1186/s13287-016-0306-3
  10. Targeting the Epigenome with Bioactive Food Components for Cancer Prevention vol.4, pp.5, 2011, https://doi.org/10.1159/000334585
  11. Micronutrient status and global DNA methylation in school-age children vol.7, pp.10, 2012, https://doi.org/10.4161/epi.21915
  12. Inflammation and Nutritional Science for Programs/Policies and Interpretation of Research Evidence (INSPIRE) vol.145, pp.5, 2015, https://doi.org/10.3945/jn.114.194571
  13. Vitamin A induces inhibitory histone methylation modifications and down-regulates trained immunity in human monocytes vol.98, pp.1, 2015, https://doi.org/10.1189/jlb.6AB0914-416R
  14. Vitamin D, DNA methylation, and breast cancer vol.20, pp.1, 2018, https://doi.org/10.1186/s13058-018-0994-y