DOI QR코드

DOI QR Code

An Advanced Design Procedure for Dome and Ring Beam of Concrete Containment Structures

콘크리트 격납구조물 돔과 링빔의 개선된 설계기법

  • Received : 2010.07.29
  • Accepted : 2010.10.09
  • Published : 2010.12.31

Abstract

The concrete containment structures have been widely used in nuclear power plants, LNG storage tanks, etc., due to their high safety and economic efficiency. The containment structure consists of a bottom slab, wall, ring beam and dome. The shape of the roof dome has a very significant effect on structural safety, the quantity of materials, and constructability; the thickness and curvature of the dome should therefore be determined to give the optimum design. The ring beam plays the role as supports for the dome, resulting in a minimized deformation of the wall. The main issues in designing the ring beam are the correct dimensions of the section and the prestress level. In this study, an efficient design procedure is proposed that can be used to determine an optimal shape and prestress level of the dome and ring beam. In the preliminary design stage of the procedure, the membrane theory of shells of revolution is adopted to determine several plausible alternatives which can be obtained even by hand calculation. Based on the proposed procedures, domes and ring beams of the existing domestic containment structures are analyzed and some improvements are discussed.

약 콘크리트 격납구조물은 구조적 안전성이 뛰어나고 경제적이므로 원자력발전소 격납건물, LNG 저장탱크 등에 널리 사용되고 있다. 격납구조물 중 지붕 돔의 형태는 구조적 안전성, 물량 및 시공 난이도에 큰 영향을 미치므로 최적의 두께와 곡률을 도출하고자 하는 노력이 필요하다. 한편 일반적으로 PSC 구조로 설계되는 링빔은 이러한 돔을 지지하여 벽체의 변형을 최소화시키는 역할을 하며, 단면 크기와 더불어 프리스트레스 수준을 적절히 결정하는 것이 설계의 핵심이 된다. 이 연구에서는 축대칭 회전쉘의 막이론을 적용하여 본설계 시의 유한요소해석에 앞서 돔과 링빔의 초기 형상이나 프리스트레스 수준을 효율적으로 결정할 수 있는 기법을 제안하였다. 이러한 기법을 국내에서 시공된 격납구조물의 돔과 링빔에 적용하여 분석하고 단면 형상이나 프리스트레싱 설계에 대한 개선 방안을 고찰하였다.

Keywords

References

  1. Ghali, A. and Elliott, E., “Prestressing of Circular Tanks,” ACI Structural Journal, Vol. 88, No. 6, 1991, pp. 721-729.
  2. Ghali, A., Circular Storage Tanks and Silos, 2nd Ed., E & FN Spon, 2000, 330 pp.
  3. Brondum-Nielsen, T., “Prestressed Tanks,” ACI Structural Journal, Vol. 82, No. 4, 1985, pp. 500-509.
  4. Brondum-Nielsen, T., “Design of Prestressed Tanks,” ACI Structural Journal, Vol. 89, No. 3, 1992, pp. 245-250.
  5. Brondum-Nielsen, T., “Creep Compensating Prestress of Tanks,” ACI Structural Journal, Vol. 90, No. 1, 1993, pp. 32-36.
  6. Brondum-Nielsen, T., “Orthotropic Shells,” ACI Structural Journal, Vol. 93, No. 3, 1996, pp. 290-294.
  7. Brondum-Nielsen, T., “Optimum Prestress of Tanks with Pinned Base,” ACI Structural Journal, Vol. 95, No. 1, 1998, pp. 3-8.
  8. Priestley, M. J. N., “Analysis and Design of Circular Prestressed Concrete Storage Tanks,” PCI Journal, Vol. 30, No. 4, 1985, pp. 64-85. https://doi.org/10.15554/pcij.07011985.64.85
  9. Nawy, E. G., Prestressed Concrete - A Fundamental Approach, Prentice-Hall, Inc., 1989, 739 pp.
  10. Billington, D. P., Thin Shell Concrete Structures, 2nd Ed., McGraw-Hill, Inc., 1982, 373 pp.
  11. Timoshenko, S. P. and Woinowsky-Krieger, S., Theory of Plates and Shells, 2nd Ed., 1970, 580 pp.
  12. Flugge, W., Stresses in Shells, 2nd Ed., Springer-Verlag, 1973, 525 pp.
  13. ACI Committee 373, Design and Construction of Circular Prestressed Concrete Structures with Circumferential Tendons(ACI 373R-97), American Concrete Institute, 1997, 26 pp.
  14. ACI Committee 207, Effect of Restraint, Volume Change, and Reinforcement on Cracking of Mass Concrete(ACI 207.2R-95), American Concrete Institute, 1995(Reapproved 2002), 26 pp.
  15. 高木 淳, 中下兼次, 和賀秀悅, 名倉健二, “世界最大 20万 kl LNG 地下タンクの開發と施工,” コンクリ一ト工學, Vol. 34, No. 2, 1996, pp. 23-32.
  16. 後藤貞雄, 中野正文, 中澤 享, 黑田正信, “世界初の埋設式 LNG 地下タンクの開發と建設,” コンクリ一ト工學, Vol. 35, No. 2, 1997, pp. 18-25.
  17. API, Welded Steel Tanks for Oil Storage(API Standard 650), 10th Ed., American Petroleum Institute, 1998.
  18. 전세진, “원전 격납건물 돔 텐던의 축대칭 모델링 기법. II. 수치예제를 통한 검증,” 콘크리트학회 논문집, 17권, 4호, 2005, pp. 527-533. https://doi.org/10.4334/JKCI.2005.17.4.527
  19. ACI Committee 334, Concrete Shell Structures Practice and Commentary(ACI 334.1R-92), American Concrete Institute, 1992(Reapproved 2002), 10 pp.
  20. ACI Committee 349, Code Requirement for Nuclear Safety Related Concrete Structures(ACI 349-01), American Concrete Institute, 2001, 134 pp.
  21. Sugano, T., Tsubota, H., Kasai, Y., Koshika, N., Itoh, C., Shirai, K., von Riesemann, W. A., Bickel, D. C., and Parks, M. B., “Local Damage to Reinforced Concrete Structures Caused by Impact of Aircraft Engine Missiles. Part 2. Evaluation of Test Results,” Nuclear Engineering and Design, Vol. 140, 1993, pp. 407-423. https://doi.org/10.1016/0029-5493(93)90121-O
  22. Suzuki, H., Nose, Y., Tanaka, T., Mizoguchi, Y., Nakachi, I., Nakano, M., Hirotani, A., Ogawa, T., and Fukada, A., “Design and Erection of Temporary Steel Roof for Under-Ground LNG Storage Tank,” Proceedings of LNG 13, 2001, PO-27.1-PO-27.10.