DOI QR코드

DOI QR Code

Prediction and Application of the Dynamic Modulus of Elasticity of Concrete Using the Wavelet Analysis

웨이블릿 해석을 이용한 콘크리트의 동탄성계수 추정 및 응용

  • Received : 2010.08.13
  • Accepted : 2010.09.13
  • Published : 2010.12.31

Abstract

The dynamic modulus of elasticity of concrete can be determined nondestructively using impact echo test as prescribed in KS F 2437. The fundamental longitudinal frequency of the concrete cylinders with free-free boundary condition was estimated by the wavelet transform theory. The advantage of the wavelet transform over either a pure spectral or temporal decomposition of the signal is that the features of the pertinent signals can be characterized in the time-frequency plane. For the concrete mix design utilized in this study, no significant difference between the dynamic and the static moduli of elasticity was observed. This was contrary to the perceived general notion of having the dynamic modulus considerably higher than the static modulus. It has been shown that the modulus from static and dynamic by impact echo test are comparable to each other fairly well, when the effect of strain level was properly taken into account. In this experimental test, it was shown that the dynamic modulus is approximately equal to the tangent modulus at $1{\times}10^{-4}$ strain level.

콘크리트의 동탄성계수는 KS F 2437에 규정된 바와 같이 탄성파 비파괴시험인 충격반향기법에 따라 측정할 수 있다. 자유단 경계조건에서의 콘크리트 공시체에 대한 종방향 고유진동수를 웨이블릿 변환이론을 적용하여 평가하였다. 웨이블릿 변환은 순수한 스펙트럼 해석뿐만 아니라 시간영역에서의 분해신호를 추출하는데 있어 시간-주파수 공간에서의 실제 신호형상을 제공하는 장점을 갖고 있다. 이 실험에 적용된 배합비를 갖는 콘크리트의 경우에 동탄성계수와 정탄성계수의 평가 결과가 큰 차이를 나타내지 않아 일반적으로 알려져 있는 정도는 아닌 것으로 판단된다. 충격반향기법에서 결정된 동탄성계수와 정적시험에서 결정된 정탄성계수는 변형률 정도를 고려하여 비교하면 비교적 서로 잘 일치하며 이 실험에서의 동탄성계수는 평균변형률 $1.04{\times}10^{-4}$에서의 접선탄성계수와 같은 것으로 평가되었다.

Keywords

References

  1. KS F 2438, 콘크리트 원주 공시체의 정탄성계수 및 포아송 비 시험 방법, 한국산업규격, 산업자원부 기술표준원, 2002.
  2. 조윤호, 조성호, 여성훈, “파괴 및 비파괴시험을 통한 콘크리트 강도와 탄성계수에 관한 실험적 연구,” 대한토목학회 학술발표회 논문집, 2000, pp. 265-268.
  3. 안남식, “재령과 온도에 따른 콘크리트 압축강도와 탄성계수에 관한 연구,” 한국도로학회 학술발표회 논문집, 4권, 1호, 2002, pp. 127-132.
  4. Kim, D. S., Kweon, G. C., and Lee, K. H., “Alternative Method of Determining Resilient Modulus of Subgrade Soils Using Static Triaxial Test,” Canadian Geotechnical Journal, Vol. 38, No. 1, 2001, pp. 107-116. https://doi.org/10.1139/cgj-38-1-107
  5. Kweon, G. C. and Kim, Y. R., “Determination of Asphalt Concrete Complex Modulus with Impact Resonance Test,” Transportation Research Record 1970, 2006, pp. 151-160.
  6. Sun, C. W., Stiffness and Damping from the Frequency Response of a Free-Free Specimen, Master's Thesis GT93-8, The University of Texas at Austin, 1993, pp. 10-35.
  7. Kim, D. S., Kweon, G. C., and Lee, K. H., “Alternative Method of Determining Resilient Modulus of Compacted Subgrade Soils Using Free-Free Resonant Column Test,” Transportation Research Board 1557, 1997, pp. 62-69.
  8. 김동수, 박형춘, 이광명, “충격반향기법을 이용한 콘크리트 부재의 비파괴 검사,” 콘크리트학회 논문집, 9권, 2호, 1997, pp. 109-119.
  9. Ala, M., Khalid, A. S., and Rajeh, A. Z., “Prediction of the Dynamic Modulus of Elasticity of Concrete under different Loading Conditions,” International Conference on Concrete Engineering and Technology, 2004.
  10. 이재환, 권기철, 정범석, “콘크리트의 탄성계수 및 감쇠비 결정에 대한 충격공진시험의 적용,” 콘크리트학회 논문집, 22권, 5호, 2010, pp. 625-632. https://doi.org/10.4334/JKCI.2010.22.5.625
  11. 장동일, 손영현, 조광현, 김광일, “온도와 고강도콘크리트의 응력-변형률 곡선 및 탄성계수 추정식 평가,” 콘크리트학회 논문집, 12권, 2호, 2000, pp. 13-20.
  12. 한상훈, 김진근, 박우선, 김동현, “온도와 재령이 콘크리트의 동탄성계수와 정탄성계수의 상관관계에 미치는 영향,” 콘크리트학회 논문집, 13권, 6호, 2001, pp. 610-618.
  13. 이승훈, 윤동환, 웨이브렛 변환, 진한도서, 서울, 1993, pp. 43-148.
  14. Newland, D. E., Random Vibrations, Spectral & Wavelet Analysis, Wesley Longman, Inc., 1993, pp. 295-370.
  15. Park H. C., Determination of Phase Velocities for SASW Method using Harmonic Wavelet Transform, Ph. D. Dissertation, Korea Advanced Institute of Science and Technology, 2000, pp. 52-79.
  16. KS F 2437, 공명 진동에 의한 콘크리트의 동탄성계수 및 동푸아송비의 시험 방법, 한국산업규격, 산업자원부 기술표준원, 2008.