Development of an Embedded Solar Tracker using LabVIEW

LabVIEW 적용 임베디드 태양추적장치 개발

  • Oh, Seung-Jin (Jeju National Univeristy, Nuclear & Energy Engineering Department) ;
  • Lee, Yoon-Joon (Jeju National Univeristy, Nuclear & Energy Engineering Department) ;
  • Kim, Nam-Jin (Jeju National Univeristy, Nuclear & Energy Engineering Department) ;
  • Oh, Won-Jong (Jeju National Univeristy, Nuclear & Energy Engineering Department) ;
  • Chun, Won-Gee (Jeju National Univeristy, Nuclear & Energy Engineering Department)
  • Received : 2010.06.02
  • Accepted : 2010.06.22
  • Published : 2010.06.30

Abstract

This paper introduces step by step procedures for the fabrication and operation of an embedded solar tracker. The system presented consists of application software, compactRIO, C-series interface module, analogue input module, step drive, step motor, feedback devices and other accessories to support its functional stability. CompactRIO that has a real-tim processor allows the solar tracker to be a stand-alone real time system which operates automatically without any external control. An astronomical method and an optical method were used for a high-precision solar tracker. CdS sensors are used to constantly generate feedback signals to the controller, which allow a solar tracker to track the sun even under adverse conditions. The database of solar position and sunrise and sunset time was compared with those of those of the Astronomical Applications Department of the U.S. Naval Observatory. The results presented here clearly demonstrate the high-accuracy of the present system in solar tracking, which are applicable to many existing solar systems.

본 연구에서는 LabVIEW를 활용한 임베디드 태양추적장치가 개발되었다. 이 시스템은 LabVIEW로 작성된 소프트웨어, CompactRIO, C-계열의 모션 인터페이스 모듈, 아날로그 수집 모듈(DAQ:Data Acquisition), 스텝 드라이브, 스텝 모터, 피드백디바이스 그리고 기타 부품들로 구성되어져 있다. CompactRIO는 내부에 리얼타임 프로세서를 내장하고 있으며 이는 태양추적장치가 외부 제어없이도 자동으로 작동이 가능하게 한다. 태양 추적장치의 정확도를 높이기 위하여 천문학적인 방법과 광학적인 방법을 통합하여 개발하였다. 광학적인 방법에서는 피드백디바이스가 사용되었는데 4개의 CdS를 사용하여 지속적으로 피드백 신호를 컨트롤러로 공급하여 문제 발생시에도 태양을 지속적으로 추적한다. 태양의 고도 및 방위각의 데이터베이스는 미국의 Naval Observatory의 데이터와 비교하였다.

Keywords

References

  1. Clifford M.J, Eastwood D. Design of a novel passive solar tracker, Solar Energy. Elsevier 2004;77;269-280. https://doi.org/10.1016/j.solener.2004.06.009
  2. Duffie JA, Beckman WA. Solar Engineering of Thermal Processes, Wiley 2006;13.
  3. Newsolartracker, Solar Energy Materials & Solar Cells. Elsevier,1998;51;113-120. https://doi.org/10.1016/S0927-0248(97)00276-6
  4. Canada J, Utrillas MP, Martinez-Lozano JA et al. Design of a sun tracker for the automatic measurement of spectral irradiance and construction of an irradiance database in the 330-1100nm range. Renewable Energy, Elsevier, 2007;32;2053-2068. https://doi.org/10.1016/j.renene.2006.11.001
  5. Naval Oceanography Portal(http://www.usno.navy.mil/USNO/astronomical-applications/data-services/data-services).
  6. Aviation Formulary V1.44 by ED Willams(http://wolliams.best.vwh.net/avform.htm).
  7. National Instruments(http://www.ni.com).