Characteristics of Hydrogen Production by Catalytic Pyrolysis of Plastics and Biomass

플라스틱 및 바이오매스의 촉매 열분해에 의한 수소 생성 특성

  • Choi, Sun-Yong (Research Institute of Energy and Environment, Seoul National University of Science & Technology) ;
  • Lee, Moon-Won (Seoul National University of Science & Technology) ;
  • Hwang, Hoon (Seoul National University of Science & Technology) ;
  • Kim, Lae-Hyun (Seoul National University of Science & Technology)
  • 최선용 (서울과학기술대학교 에너지환경연구소) ;
  • 이문원 (서울과학기술대학교) ;
  • 황훈 (서울과학기술대학교) ;
  • 김래현 (서울과학기술대학교)
  • Received : 2010.06.14
  • Accepted : 2010.10.20
  • Published : 2010.12.31

Abstract

In this study, we consider gas generation characteristics on pyrolysis of eco-fuel which were made by mixing of Pitch Pine and Lauan sawdust as biomass and polyethylene, polypropylene, polystyrene as municipal plastic wastes with catalyst in fixed bed reactor. From the result of higher heating value(HHV) measurement and of ultimate analysis, the heating value of plastic wastes and a hydrogen content in plastic sample are higher than biomass. An activation energy was reduced by a catalyst addition. However the catalyst content influence over 5 wt% was insignificant. The yield of hydrogen from gasification of biomass containing plastic wastes such as polyethylene, polypropylene and polystyrene were obtained higher than that of sole biomass. The high temperature and mixture ratio of catalyst conditions induced to high hydrogen yield in most of the samples. As the influence of catalyst, the hydrogen yield by catalytic reaction was higher than non-catalytic reaction. We confirmed that Ni-$ZrO_2$ catalyst is more active in increasing the hydrogen yield in comparison with that of carbonate catalyst. The maximum hydrogen yield was 65.9 vol.%(Pitch Pine / polypropylene / 20 wt.% Ni-$ZrO_2$(1:9) at $900^{\circ}C$).

본 연구에서는 바이오매스 및 플라스틱에 가스화 효율을 높이기 위한 탄산염 촉매 또는 Ni based 촉매를 혼합한 시료에 대하여, 고정층 반응기를 이용하여 급속 등온 열분해 실험을 수행하여, 생성된 가스의 온도, 시료 및 촉매의 영향에 관한 분석을 통하여, 최적의 수소 생성 수율을 얻고자 한다. 고위발열량 측정 결과, 바이오매스보다 플라스틱 폐기물의 발열량이 높아짐을 알 수 있었다. 원소분석 결과로부터 수소 함량은 플라스틱 시료가 더 높았다. 계산된 활성화 에너지는 촉매 적용에 의해 감소하였고, 5 wt% 이상의 경우에는 큰 변화를 보이지 않았다. 수소수율은 플라스틱 폐기물이 포함된 시료, 온도에 대해서는 대부분 높은 온도 범위에서 최대값이 얻어졌다. 또한 대부분의 시료에서 높은 혼합비를 갖는 조건의 수소수율이 가장 높은 결과를 보였으나, 5 wt% 이상의 조건에서는 촉매 혼합비 증가의 영향은 미비하여, 활성화 에너지의 결과와 잘 일치함을 확인하였다. 전체적으로 촉매 반응이 무촉매 반응에 비하여 높은 수소수율이 얻어졌다. 촉매 종류에 대하여, 탄산염 촉매인 $Na_2CO_3$$K_2CO_3$보다 Ni-$ZrO_2$ 촉매가 수소 생산을 위한 목적에 더 적합한 촉매임을 확인하였고, 본 연구로부터의 최대 수소수율을 위한 조건은 $900^{\circ}C$, 20 wt%의 Ni-$ZrO_2$(1:9) 촉매가 혼합된 Pitch Pine, Polyethylene 시료에 대하여 65.9 vol%의 높은 수소수율의 결과를 얻었다.

Keywords

References

  1. 심규성, 수소에너지 시스템 기술, Kosen/OSTIN Expert Review(2002).
  2. M. Peavey, and A. Michael, FUEL FROM WATER, Energy Independence with Hydrogen, Kentucky, Merit, Inc, ISBN 0-945516-04-5(1995).
  3. T. Ohta, 김길환 역, 수소에너지, 21 세기문화사(1988).
  4. A. Fujishima, K. Hashimoto, and T. Watanabe, TiO2 Photocatalysis: Fundamentals and Applications, BKC Inc, Tokyo(1999).
  5. D. Kluyskens, and R. Wurster, The Euro-Queec Hydro- Hydrogen Project, International Hydrogen and Clean Energy Symposium 1995, Keidanren Hall, Tokyo, February 6-8, Proceeding 395-398(1995).
  6. W. Bonner T. Bottset, J. McBreen, A. Mezzina, F. Salzano, and C. Yang, Status of advanced electrolytic hydrogen production in the United States and abroad, International Journal of Hydrogen Energy, Vol. 9, Issue 4, 269-275(1984). https://doi.org/10.1016/0360-3199(84)90076-4
  7. N. M. Bodrov, L. O. Apel'baum, and M. I. Temkin, Kinetics of the reaction of methane with water vapor on a nickel surface, Kinetics and Catalysis, Vol. 5, 614-622(1964).
  8. G. Chen, J. Andries, H. Spliethoff, Catalytic pyrolysis of biomass for hydrogen rich fuel gas production, Energy Conversion and Management, Vol. 44, No. 14, 2289-2296(2003). https://doi.org/10.1016/S0196-8904(02)00254-6
  9. M.H. Spritzer and G.T. Hong, Supercritical water partial oxidation, FY 2003 Progress Report, National Renewable Energy Laboratory(2003).
  10. Mehmet Balat., Elif Kirtay., Havva Balat., Main routes for the thermo-conversion of biomass into fuels and chemicals. Part2 : Gasification systems, Energy Conversion and Management, Vol. 50, 3158-3168(2009). https://doi.org/10.1016/j.enconman.2009.08.013
  11. J. Werther, M. Saenger, E. -U. Hartge, T. Ogada and Z. Siagi end, Combustion of agricultural residues, Progress in Energy and Combustion Science, Vol. 26, Issue 1, 1-27(2000). https://doi.org/10.1016/S0360-1285(99)00005-2
  12. Jose Corella, Alvaro Sanz end, Modeling circulating fluidized bed biomass gasifiers. A pseudo-rigorous model for stationary state, Fuel Processing Technology, Vol. 86, Issue 9, 1021-1053(2005). https://doi.org/10.1016/j.fuproc.2004.11.013
  13. K. Reisinger, C. Haslinger, M. Herger, H. Hofbauer, BIOBIB - A Database for biofuels., THERMIE-Conference, Renewable Energy Databases, Harwell, UK(1996).
  14. 김래현, 김희준, 승강기능을 갖는 전기로(Electric Heater Having Up And Down Function), 10-0785051, 대한민국(2007).
  15. Bilbao R, Arauzo J, Salvador ML end, Kinetics and Modeling of Gas-Formation in the Thermal-Decomposition of Powdery Cellulose and Pine Sawdust, Industrial & Engineering Chemistry Research, Vol. 34, No. 3, 786-793(1995). https://doi.org/10.1021/ie00042a010
  16. A. Marongiu, T. Faravelli, G. Bozzano, M. Dente and E. Ranzi Thermal degradation of poly(vinyl chloride), Journal Analytical and Applied Pyrolysis, Vol. 70, 519-553(2003). https://doi.org/10.1016/S0165-2370(03)00024-X
  17. Lieve Helsen, E. Van den Bulck, Kinetics of the lowtemperature pyrolysis of chromated copper arsenatetreated wood, Journal Analytical and Applied Pyrolysis, Vol. 53, 51-79(2000). https://doi.org/10.1016/S0165-2370(99)00050-9
  18. S. Rapagna, H. Provendier, C. Petit, A. Kiennemann and P.U. Foscolo, Development of catalysts suitable for hydrogen or syn-gas production from Biomass gasification, Biomass and Bioenergy, Vol. 22, 377(2002). https://doi.org/10.1016/S0961-9534(02)00011-9
  19. S. Turn, C. Kinoshita, Z. Zhang, D. Ishimura and J. Zhou, An experimental investigation of hydrogen production from Biomass gasification, International Journal of Hydrogen Energy, Vol. 23, 641(1998). https://doi.org/10.1016/S0360-3199(97)00118-3
  20. S. Rapagna, N. Jand and P.U. Foscolo, Catalytic gasification of Biomass to produce hydrogen rich gas, International Journal of Hydrogen Energy Vol. 23, 551(1998). https://doi.org/10.1016/S0360-3199(97)00108-0