DOI QR코드

DOI QR Code

Air Sampling and Isotope Analyses of Water Vapor and CO2 using Multi-Level Profile System

다중연직농도시스템(Multi-Level Profile System)을 이용한 수증기와 이산화탄소 시료채취 및 안정동위원소 조성 분석

  • Lee, Dong-Ho (Department of Atmospheric Sciences/Gloal Environment Laboratory, Yonsei University) ;
  • Kim, Su-Jin (Department of Atmospheric Sciences/Gloal Environment Laboratory, Yonsei University) ;
  • Cheon, Jung-Hwa (Korea Forest Research Institute) ;
  • Kim, Joon (Department of Atmospheric Sciences/Gloal Environment Laboratory, Yonsei University)
  • 이동호 (연세대학교 대기과학과/지구환경연구소) ;
  • 김수진 (연세대학교 대기과학과/지구환경연구소) ;
  • 천정화 (국립산림과학원) ;
  • 김준 (연세대학교 대기과학과/지구환경연구소)
  • Received : 2010.09.03
  • Accepted : 2010.10.04
  • Published : 2010.12.30

Abstract

The multi-level $H_2O/CO_2$ profile system has been widely used to quantify the storage and advection effects on energy and mass fluxes measured by eddy covariance systems. In this study, we expanded the utility of the profile system by accommodating air sampling devices for isotope analyses of water vapor and $CO_2$. A pre-evacuated 2L glass flask was connected to the discharge of an Infrared Gas Analyzer (IRGA) of the profile system so that airs with known concentration of $H_2O$ and $CO_2$ can be sampled. To test the performance of this sampling system, we sampled airs from 8 levels (from 0.1 to 40 m) at the KoFlux tower of Gwangneung deciduous forest, Korea. Air samples in the 2L flask were separated into its component gases and pure $H_2O$ and $CO_2$ were extracted by using a vacuum extraction line. This novel technique successfully produced vertical profiles of ${\delta}D$ of $H_2O$ and ${\delta}^{13}C$ of $CO_2$ in a mature forest, and estimated ${\delta}D$ of evapotranspiration (${\delta}D_{ET}$) and ${\delta}^{13}C$ of $CO_2$ from ecosystem respiration (${\delta}^{13}C_{resp}$) by using Keeling plots. While technical improvement is still required in various aspects, our sampling system has two major advantages over other proposed techniques. First, it is cost effective since our system uses the existing structure of the profile system. Second, both $CO_2$ and $H_2O$ can be sampled simultaneously so that net ecosystem exchange of $H_2O$ and $CO_2$ can be partitioned at the same temporal resolution, which will improve our understanding of the coupling between water and carbon cycles in terrestrial ecosystems.

다중 수증기/이산화탄소 연직농도시스템(이하 프로파일시스템)은 에디공분산 방법에 의해 측정된 에너지 및 물질 플럭스에 대한 저류항 및 이류의 영향을 정량화하기 위해 광범위하게 이용되고 있다. 본 연구에서는 현재 사용되고 있는 프로파일시스템의 용도를 보다 확장하여 안정동위원소 분석을 위한 공기시료 채취에 활용하였다. 프로파일시스템에서 기체농도 측정에 이용되는 적외선기체분석기의 유출부에 2L 용량의 진공 플라스크를 연결하여 수증기와 이산화탄소의 농도가 측정된 공기시료가 채취되도록 개조하였다. 이 방법의 적용성을 검증하기 위하여 광릉 활엽수림 내에 설치되어 있는 플럭스타워에서 8개의 높이(0.1~40m)로 부터 공기시료를 채취하였다. 플라스크에 채취된 공기시료로부터 실험실에서 진공추출라인을 이용하여 순수한 수증기와 이산화탄소가 분리되었고, 질량분석기를 이용하여 수증기의 수소 안정동위원소 조성 그리고 이산화탄소의 탄소 안정동위원소 조성을 각각 측정하였다. 이와 같은 방법으로 얻어진 자료를 이용하여 산림내 수증기의 수소 안정동위원소 조성과 이산화탄소의 탄소 안정동위원소 조성의 수직적 분포를 확인하였고, 아울러 Keeling plot 을 적용하여 증발산된 수증기의 수소 동위원소 조성 및 생태계 호흡에 의해 발생된 이산화탄소의 탄소동위원소 조성을 산출하였다. 비록 현단계에서 여러 가지 기술적인 개선점이 존재하지만, 본 연구에서 이용한 방법은 기존에 활용되고 있는 방법과 비교하여 두 가지 장점이다. 첫째, 이 방법은 기존에 운용되고 있는 프로파일 시스템의 구조를 그대로 활용함으로써 상대적으로 저비용으로 이용이 가능하다. 둘째, 수증기와 이산화탄소의 동시 시료채취와 동위원소 분석이 가능하여 증발산 및 순생태교환량 구성요소의 구분이 동일한 시간적 해상도로 이루어질 수 있다. 이러한 결과는 생태계 물과 탄소 순환 과정의 상호관련성에 대한 보다 향상된 이해를 위한 기본 자료로 활용될 수 있을 것으로 기대된다.

Keywords

References

  1. Bowling, D. R., C. S. Cook, and J. R. Ehleringer, 2001a: Technique to measure $CO_2$ mixing ratio in small flasks with a bellows/IRGA system. Agricultural and Forest Meteorology 109, 61-65. https://doi.org/10.1016/S0168-1923(01)00252-0
  2. Bowling, D. R., A. C. Delany, A. A. Turnipseed, D. D. Baldocchi, and R. K. Monson, 1999: Modification of the relaxed eddy accumulation technique to maximize measured scalar mixing ratio differences in updrafts and downdrafts. Journal of Geophysical Research, 104(D8), 9121-9133. https://doi.org/10.1029/1999JD900013
  3. Bowling, D. R., N. G. McDowell, B. J. Bond, B. E. Law, and J. R. Ehleringer, 2002: $^{13}C$ content of ecosystem respiration is linked to precipitation and vapor pressure deficit. Oecologia 131, 113-124. DOI :10.1007/s00442-001-0851-y
  4. Bowling, D. R., S. D. Sargent, B. D. Tanner, and J. R. Ehleringer, 2003: Tunable diode laser absorption spectroscopy for stable isotope studies of ecosystem-atmosphere $CO_2$ exchange. Agricultural and Forest Meteorology 118, 1-19. https://doi.org/10.1016/S0168-1923(03)00074-1
  5. Bowling, D. R., P. P. Tans and R. K. Monson, 2001b: Partitioning net ecosystem carbon exchange with isotopic fluxes of $CO_2$. Global Change Biology 7, 127-145. https://doi.org/10.1046/j.1365-2486.2001.00400.x
  6. Buchmann, N., Brooks, J. R., and Ehleringer, J. R., 2002. Predicting daytime carbon isotope ratios of atmospheric $CO_2$ within forest canopies. Functional Ecology 16, 49-57. https://doi.org/10.1046/j.0269-8463.2001.00591.x
  7. Ferretti, D. F., D. C. Lowe, R. J. Martin, and G. W. Brasilsford, 2000: A new gas chromatograph-isotope ratio mass spectrometry technique for high-precision, $N_2O$-free analysis of $\delta^{13}C\;and\;\delta^{18}O\;in\;atmospheric\;CO_2 $ from small air samples. Journal of Geophysical Research 105(D5), 6709-6718. https://doi.org/10.1029/1999JD901051
  8. Flanagan, L. B., and J. R. Ehleringer, 1998: Ecosystematmosphere $CO_2$ exchange: interpreting signals of change using stable isotope ratios. Tree 13(1), 10-14.
  9. Kang, M., H. Kwon, J. H. Cheon, and J. Kim, 2010: On estimating wet canopy evaporation from deciduous and coniferous forests in Asian monsoon climate. Journal of Hydrometeorology (in review).
  10. Lai, C.-T., J. R. Ehlerlinger, B. J. Bond, and K. T. Paw U, 2006: Contributions of evaporation, isotopic non-steady state transpiration and atmospheric mixing on the $a^{18}O$of water vapour in Pacific Northwest coniferous forests. Plant, Cell and Environment 29, 77-94. https://doi.org/10.1111/j.1365-3040.2005.01402.x
  11. Mortazavi, B., J. P. Chanton, J. L. Prater, A. C. Oishi, R. Oren, and G. Katul, 2005: Temporal variability in $^{13}C$ of respired $CO_2$ in a pine and a hardwood forest subject to similar climatic conditions. Oecologia 142, 57-69. DOI :10.1007/s00442-004-1692-2.
  12. Ogee, J., P. Peylin, P. Ciais, T. Bariac, Y. Brunet, P. Berbigier, C. Roche, P. Richard, G. Bardoux, and J.-M. Bonnefond, 2003: Partitioning net ecosystem carbon exchange into net assimilation and respiration using $^{13}CO_2$ measurements: A cost-effective sampling strategy. Global Biogeochemical Cycles 17(2), 1070. DOI : 10.1029/2002GB001995.
  13. Pataki, D. E., J. R. Ehleringer, L. B. Flanagan, D. Yakir, D. R. Bowling, C. J. Still, N. Buchmann, J. O. Kaplan, and J. A. Berry, 2003: The application and interpretation of Keeling plots in terrestrial carbon cycle research. Global Biogeochemical Cycles 17(1), 1022. DOI: 10.1029/2001GB001850.
  14. Pypker, T. G., M. H. Unsworth, A. C.Mix, W. Rugh, T. Ocheltree, K. Alstad, and B. J. Bond, 2007: Using nocturnal cold air drainage flow to monitor ecosystem processes in complex terrain. Ecological Applications 17(3), 702-714. https://doi.org/10.1890/05-1906
  15. Rayner, P. J., R. M. Law, C. E. Allison, R. J. Francey, C. M. Trudinger, and C. Picket-Heaps, 2008: Interannual variability of the global carbon cycle (1992-2005) inferred by inversion of atmospheric $CO_2\;and\;^{13}C_{CO2}$ measurements. Global Biogeochemical Cycles 22, GB3008. DOI : 10.1029/2007GB003068.
  16. Wahl, E., B. Fidric, C. Rella, S. Koulikov, B. Kharlamov, S. Tan, A. Kachanov, B. Richman, E. Crosson, B. Paldus, S. Kalaskar, and D. Bowling, 2006: Applications of cavity ring-down spectroscopy to high precision isotope ratio measurement of 13C/12C in carbon dioxide. Isotopes in Environmental and Health Studies 42(1), 21-35. https://doi.org/10.1080/10256010500502934
  17. Wang, X., and D. Yakir, 2000: Using stable isotopes of water in evaporation studies. Hydrological Processes 14, 1407-1421. https://doi.org/10.1002/1099-1085(20000615)14:8<1407::AID-HYP992>3.0.CO;2-K
  18. Williams, D. G., W. Cable, K. Hultine, J. C. B. Hoedjes, E. A. Yepez, V. Simonneaux, S. Er-Raki, G. Boulet, H. A. R. de Bruin, A. Chehbouni, O. K. Hartogensis, and F. Timouk, 2004: Evapotranspiration components determined by stable isotope, sap flow and eddy covariance techniques. Agricultural and Forest Meteorology 125, 241-258. https://doi.org/10.1016/j.agrformet.2004.04.008
  19. Wofsy, S. C., R. C. Harriss, and W. A. Kaplan, 1988: Carbon dioxide in the atmosphere over the Amazon basin. Journal of Geophysical Research 93, 1377-1388. https://doi.org/10.1029/JD093iD02p01377
  20. Yakir, D., and X. Wang, 1996: Fluxes of $CO_2$ and water between terrestrial vegetation and the atmosphere estimated from isotope measurements. Nature 380, 515-517. https://doi.org/10.1038/380515a0
  21. Yepez, E. A., D. G. Williams, R. L. Scott, and G. Lin, 2003: Partitioning overstory and understory evapotranspiration in a semiarid savanna woodland from the isotopic composition of water vapor. Agricultural and Forest Meteorology 119, 53-68. https://doi.org/10.1016/S0168-1923(03)00116-3
  22. Yoo, J., Lee, D., Hong, J. and Kim, J., 2009: Principles and Applications of Multi-Level $H_2O/CO_2$ Profile Measurement System. Korean Journal of Agricultural and Forest Meteorology 11(1), 27-38 (in Korean with English abstract). https://doi.org/10.5532/KJAFM.2009.11.1.027
  23. http://www.hydrokorea.org/(2010. 8. 25)