DOI QR코드

DOI QR Code

Functional implications of gene expression analysis from rice tonoplast intrinsic proteins during seed germination and development

벼 종자에서 액포막 aquaporin (tonoplast intrinsic protein) 유전자의 발현과 기능

  • Huh, Sun-Mi (Bio-crops development Division, National Academy of Agricultural Science, RDA) ;
  • Lee, In-Sook (Bio-crops development Division, National Academy of Agricultural Science, RDA) ;
  • Kim, Beom-Gi (Bio-crops development Division, National Academy of Agricultural Science, RDA) ;
  • Shin, Young-Seop (Rice research Division, National Institute of Crop Science, RDA) ;
  • Lee, Gang-Seop (Genomics Division, National Academy of Agricultural Science, RDA) ;
  • Kim, Dool-Yi (Bio-crops development Division, National Academy of Agricultural Science, RDA) ;
  • Byun, Myung-Ok (Bio-crops development Division, National Academy of Agricultural Science, RDA) ;
  • Kim, Dong-Hern (Bio-crops development Division, National Academy of Agricultural Science, RDA) ;
  • Yoon, In-Sun (Bio-crops development Division, National Academy of Agricultural Science, RDA)
  • 허선미 (농촌진흥청 국립농업과학원 신작물개발과) ;
  • 이인숙 (농촌진흥청 국립농업과학원 신작물개발과) ;
  • 김범기 (농촌진흥청 국립농업과학원 신작물개발과) ;
  • 신영섭 (농촌진흥청 국립식량과학원 답작과) ;
  • 이강섭 (농촌진흥청 국립농업과학원 유전자분석개발과) ;
  • 김둘이 (농촌진흥청 국립농업과학원 신작물개발과) ;
  • 변명옥 (농촌진흥청 국립농업과학원 신작물개발과) ;
  • 김동헌 (농촌진흥청 국립농업과학원 신작물개발과) ;
  • 윤인선 (농촌진흥청 국립농업과학원 신작물개발과)
  • Received : 2010.10.18
  • Accepted : 2010.11.02
  • Published : 2010.12.31

Abstract

Rice seed maturation and germination involve drastic changes in water and nutrient transport, in which tonoplast aquaporins may play an important role. In the present study, gene expression profiles of 10 tonoplast intrinsic proteins (TIP) from rice were investigated by RT-PCR during seed development and germination. OsTIP3;1 and OsTIP3;2 were specifically expressed in mature seeds. Their transcript level rapidly decreased after onset of seed germination and gene expression was induced by ABA treatment. In contrast, expression of OsTIP2;1 and OsTIP4;3 was not seed specific as transcripts were found in vegetative tissues as well. Their respective transcript levels decreased at an early stage of seed development, whereas they increased at a later stage of seed germination and elongation of embryonic roots and shoots. When seed germination was inhibited by various stress conditions and ABA, expression of OsTIP2;1 and OsTIP4;3 was completely suppressed. In contrast, the expression level of OsTIP2;2 rapidly increased after seed imbibition and the transcript level was maintained under conditions inhibiting seed germination. These results implicate that tissue specific and developmental transcriptional regulation of OsTIPs in rice seeds depends on their specific function. In addition, OsTIPs can be discriminated by different potential phosphorylation and methylation sites in their protein structures. OsTIP3;1 and OsTIP3;2 possess unique phosphorylation signatures at their N-terminal domain, loop B and loop E, respectively. OsTIP2;1 and OsTIP4;3 have a potential methylation site at their Nterminal domain. This suggests that activity of specific tonoplast aquaporins may be regulated by post-translational modification as well as by transcriptional control.

종자 발달과 발아는 수분과 양분 함량의 급격한 변화를 수반하는 복합적인 과정이다. 본 연구에서는 유전자 발현과 단백질 구조 비교 분석을 통해 벼 종자의 발아와 발달과정에 관여하는 액포막 aquaporin (tonoplast intrinsic protein)을 규명하였다. OsTIP3;1, OsTIP3;2는 종자 특이적인 TIP로 종자가 성숙되는 시기에 발현되었다가, 종자가 발아하면서 전사체가 사라지는 양상을 보였으며, ABA 처리에 의해 발현이 유도되었다. 단백질 구조 예측 결과로부터 OsTIP3;1, OsTIP3;2가 단백질의 N-말단, B와 E loop에 다른 TIP와 뚜렷이 구분되는 인산화 잔기 특징을 확인하였다. OsTIP2;1과 OsTIP4;3은 종자가 발달하는 과정에서 유전자 발현이 감소하였다가, 종자 발아 후기에 뿌리와 배축의 신장이 활발한 시기에 발현이 급증하였다. 특히 OsTIP2;1은 뿌리에서 강한 발현을 보였으므로, 뿌리 생장에 필요한 팽압 공급에 중요한 기능을 할 것으로 제안된다. OsTIP2;1과 OsTIP4;3 단백질의 N-말단에는 특징적으로 메틸화 (methylation) 가능성이 높은 아미노산 잔기가 예측되었다. OsTIP2;2는 OsTIP2;1과는 달리 종자 침윤 후 7시간 이내에 발현이 빠르게 유도되며, 발아가 억제되는 조건에서도 유전자 발현이 유지되는 것으로 보아 종자의 초기 수화 과정에 관여할 것으로 추측된다. OsTIP2;2 단백질의 N-말단에는 OsTIP2;1에 존재하는 인산화 Ser 잔기와 메틸화 잔기가 결실된 특징을 보였다. 이런 결과들은 벼 종자의 발달과 발아 과정에서 나타나는 액포의 종류와 기능에 따라 서로 다른 TIP가 선택적으로 유전자 발현수준에서 조절되며, 인산화, 메틸화 등 단백질 수식에 의한 활성조절 기작 역시 매우 다르다는 것을 시사한다.

Keywords

References

  1. Amezcua-Romero JC, Pantoja O, Vera-Estrella R (2010) Ser 123 is essential for the water channel activity of McPIP 2;1 from Mesembryanthemum crystallinum. J Biol Chem 285:16739-16747 https://doi.org/10.1074/jbc.M109.053850
  2. Bewley JD (1997) Seed Germination and Dormancy. Plant Cell 9:1055-1066 https://doi.org/10.1105/tpc.9.7.1055
  3. Bienert GP, Moller AL, Kristiansen KA, Schulz A, Møller IM, Schjoerring JK, Jahn TP (2007) Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J Biol Chem 282:1183-1192 https://doi.org/10.1074/jbc.M603761200
  4. Boursiac Y, Chen S, Luu DT, Sorieul M, van den Dries N, Maurel C (2005) Early effects of salinity on water transport in Arabidopsis roots Molecular and cellular features of aquaporin expression. Plant Physiol 139:790-805 https://doi.org/10.1104/pp.105.065029
  5. Bouton S, Viau L, Lelièvre E, Limami AM (2005) A gene encoding a protein with a proline-rich domain (MtPPRD1) revealed by suppressive subtractive hybridization (SSH) is specifically expressed in the Medicago truncatula embryo axis during germination. J Exp Bot 56:825-832 https://doi.org/10.1093/jxb/eri077
  6. Chaumont F, Barrieu F, Herman EM, Chrispeels MJ (1998) Characterization of a maize tonoplast aquaporin expressed in zones of cell division and elongation. Plant Physiol 117:1143-1152 https://doi.org/10.1104/pp.117.4.1143
  7. Chaumont F, Moshelion M, Daniels MJ (2005) Regulation of plant aquaporin activity. Biol Cell 97:749-764 https://doi.org/10.1042/BC20040133
  8. Daniels MJ, Yeager M (2005) Phosphorylation of aquaporin PvTIP3;1 defined by mass spectrometry and molecular modeling. Biochemistry 44:14443-14454 https://doi.org/10.1021/bi050565d
  9. Flexas J, Ribas-Carbó M, Hanson DT, Bota J, Otto B, Cifre J, McDowell N, Medrano H, Kaldenhoff R (2006) Tobacco aquaporin NtAQP1 is involved in mesophyll conductance to $CO_2$ in vivo. Plant J 48:427-439 https://doi.org/10.1111/j.1365-313X.2006.02879.x
  10. Gao YP, Young L, Bonham-Smith P, Gusta LV (1999) Characterization and expression of plasma and tonoplast membrane aquaporins in primed seed of Brassica napus during germination under stress conditions. Plant Mol Biol 40:635-644 https://doi.org/10.1023/A:1006212216876
  11. Gerbeau P, Güçlü J, Ripoche P, Maurel C (1999) Aquaporin Nt-TIPa can account for the high permeability of tobacco cell vacuolar membrane to small neutral solutes. Plant J 18:577-587 https://doi.org/10.1046/j.1365-313x.1999.00481.x
  12. Gomes D, Agasse A, Thiébaud P, Delrot S, Gerós H, Chaumont F (2009) Aquaporins are multifunctional water and solute transporters highly divergent in living organisms. Biochim Biophys Acta 1788:1213-1228 https://doi.org/10.1016/j.bbamem.2009.03.009
  13. Hachez C, Moshelion M, Zelazny E, Cavez D, Chaumont F (2006) Localization and quantification of plasma membrane aquaporin expression in maize primary root: a clue to understanding their role as cellular plumbers. Plant Mol Biol. 62:305-323 https://doi.org/10.1007/s11103-006-9022-1
  14. Hanba YT, Shibasaka M, Hayashi Y, Hayakawa T, Kasamo K, Terashima I, Katsuhara M (2004) Overexpression of the barley aquaporin HvPIP2;1 increases internal $CO_2$ conductance and $CO_2$ assimilation in the leaves of transgenic rice plants. Plant Cell Physiol 45:521-529 https://doi.org/10.1093/pcp/pch070
  15. Hunter PR, Craddock CP, Di Benedetto S, Roberts LM, Frigerio L (2007) Fluorescent reporter proteins for the tonoplast and the vacuolar lumen identify a single vacuolar compartment in Arabidopsis cells. Plant Physiol 145:1371-1382 https://doi.org/10.1104/pp.107.103945
  16. Jahn TP, Moller AL, Zeuthen T, Holm LM, Klaerke DA, Mohsin B, Kuhlbrandt, Schjoerring JK (2004) Aquaporin homologues in plants and mammals transport ammonia. FEBS Lett 574:31-36 https://doi.org/10.1016/j.febslet.2004.08.004
  17. Johansson I, Karlsson M, Shukla VK, Chrispeels MJ, Larsson C, Kjellbom P (1998) Water transport activity of the plasma membrane aquaporin PM28A is regulated by phosphorylation. Plant Cell 10:451-459 https://doi.org/10.1105/tpc.10.3.451
  18. Johnson KD, Herman EM, Chrispeels MJ (1989) An abundant, highly conserved tonoplast protein in seeds. Plant Physiol 91:1006-1013 https://doi.org/10.1104/pp.91.3.1006
  19. Johnson KD, Hofte H, Chrispeels MJ (1990)An intrinsic tonoplast protein of protein storage vacuoles in seeds is structurally related to a bacterial solute transporter (GIpF). Plant Cell 2:525-532 https://doi.org/10.1105/tpc.2.6.525
  20. Kaldenhoff R, Bertl A, Otto B, Moshelion M, Uehlein N (2007) Characterization of plant aquaporins. Methods Enzymol 428:505-531 https://doi.org/10.1016/S0076-6879(07)28028-0
  21. Kline KG,Barrett-Wilt GA, Sussman MR (2010)In planta changes in protein phosphorylation induced by the plant hormone abscisic acid. Proc Natl Acad Sci U.S.A. 107:15986-15991 https://doi.org/10.1073/pnas.1007879107
  22. Li GW, Zhang MH, Cai WM, Sun WN, Su WA (2008a) Characterization of OsPIP2;7, a water channel protein in rice. Plant Cell Physiol 49:1851-1858 https://doi.org/10.1093/pcp/pcn166
  23. Li GW, Peng YH, Yu X, Zhang MH, Cai WM, Sun WN, Su WA (2008b) Transport functions and expression analysis of vacuolar membrane aquaporins in response to various stresses in rice. J Plant Physiol 165:1879-1888 https://doi.org/10.1016/j.jplph.2008.05.002
  24. Liu D, Tu L, Wang L, Li Y, Zhu L, Zhang X (2008) Characterization and expression of plasma and tonoplast membrane aquaporins in elongating cotton fibers. Plant Cell Rep 27:1385-1394 https://doi.org/10.1007/s00299-008-0545-6
  25. Liu HY, Yu X, Cui DY, Sun MH, Sun WN, Tang ZC, Kwak SS, Su WA (2007) The role of water channel proteins and nitric oxide signaling in rice seed germination. Cell Res 17:638-649 https://doi.org/10.1038/cr.2007.34
  26. Liu LH, Ludewig U, Gassert B, Frommer WB, von Wirén N (2003) Urea transport by nitrogen-regulated tonoplast intrinsic proteins in Arabidopsis. Plant Physiol 133:1220-1228 https://doi.org/10.1104/pp.103.027409
  27. Liu Q, Umeda M, Uchimiya H (1994) Isolation and expression analysis of two rice genes encoding the major intrinsic protein. Plant Mol Biol 26:2003-2007 https://doi.org/10.1007/BF00019511
  28. Loque D, Ludewig U, Yuan L, von Wiren N (2005) Tonoplast intrinsic proteins AtTIP2;1 and AtTIP2;3 facilitate NH3 transport into the vacuole. Plant Physiol 137:671-680 https://doi.org/10.1104/pp.104.051268
  29. Ludevid D, Hofte H, Himelblau E, Chrispeels MJ (1992) The Expression Pattern of the Tonoplast Intrinsic Protein gamma-TIP in Arabidopsis thaliana Is Correlated with Cell Enlargement. Plant Physiol 100:1633-1639 https://doi.org/10.1104/pp.100.4.1633
  30. Ma S, Quist TM, Ulanov A, Joly R, Bohnert HJ (2004) Loss of TIP1;1 aquaporin in Arabidopsis leads to cell and plant death. Plant J 40:845-859 https://doi.org/10.1111/j.1365-313X.2004.02265.x
  31. Maurel C (2007) Plant aquaporins: novel functions and regulation properties. FEBS Lett 581:2227-2236 https://doi.org/10.1016/j.febslet.2007.03.021
  32. Maurel C, Kado RT, Guern J, Chrispeels MJ (1995) Phosphorylation regulates the water channel activity of the seed-specific aquaporin alpha-TIP. EMBO J 14:3028-3035
  33. Maurel C, Reizer J, Schroeder JI, Chrispeels MJ (1993) The vacuolar membrane protein gamma-TIP creates water specific channels in Xenopus oocytes. EMBO J 12:2241-2247
  34. Maurel C, Verdoucq L, Luu DT, Santoni V (2008) Plant aquaporins: membrane channels with multiple integrated functions. Annu Rev Plant Biol 59:595-624 https://doi.org/10.1146/annurev.arplant.59.032607.092734
  35. Niemietz CM, Tyerman SD (2000) Channel-mediated permeation of ammonia gas through the peribacteroid membrane of soybean nodules. FEBS Lett 465:110-114 https://doi.org/10.1016/S0014-5793(99)01729-9
  36. Niittyla T, Fuglsang AT, Palmgren MG, Frommer WB, Schulze WX (2007) Temporal analysis of sucrose-induced phosphorylation changes in plasma membrane proteins of Arabidopsis. Mol Cell Proteomics 6:1711-1726 https://doi.org/10.1074/mcp.M700164-MCP200
  37. Nyblom M, Frick A, Wang Y, Ekvall M, Hallgren K, Hedfalk K, Neutze R, Tajkhorshid E, Tornroth-Horsefield S (2009) Structural and functional analysis of SoPIP2;1 mutants adds insight into plant aquaporin gating. J Mol Biol 387:653-668 https://doi.org/10.1016/j.jmb.2009.01.065
  38. Parent B, Hachez C, Redondo E, Simonneau T, Chaumont F, Tardieu F (2009) Drought and abscisic acid effects on aquaporin content translate into changes in hydraulic conductivity and leaf growth rate: a trans-scale approach. Plant Physiol 149:2000-2012 https://doi.org/10.1104/pp.108.130682
  39. Prak S, Hem S, Boudet J, Viennois G, Sommerer N, Rossignol M, Maurel C, Santoni V (2008) Multiple phosphorylations in the C-terminal tail of plant plasma membrane aquaporins: role in subcellular trafficking of AtPIP2;1 in response to salt stress. Mol Cell Proteomics 7:1019-1030 https://doi.org/10.1074/mcp.M700566-MCP200
  40. Sakurai J, Ahamed A, Murai M, Maeshima M, Uemura M (2008) Tissue and cell-specific localization of rice aquaporins and their water transport activities. Plant Cell Physiol 49:30-39 https://doi.org/10.1093/pcp/pcm162
  41. Sakurai J, Ishikawa F, Yamaguchi T, Uemura M, Maeshima M (2005) Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant Cell Physiol 46:1568-1577 https://doi.org/10.1093/pcp/pci172
  42. Schnurbusch T, Hayes J, Hrmova M, Baumann U, Ramesh SA, Tyerman SD, Langridge P, Sutton T (2010) Boron toxicity tolerance in barley through reduced expression of the multifunctional aquaporin HvNIP2;1. Plant Physiol 153:1706-1715 https://doi.org/10.1104/pp.110.158832
  43. Schuurmans JA, van Dongen JT, Rutjens BP, Boonman A, Pieterse CM, Borstlap AC (2003) Members of the aquaporin family in the developing pea seed coat include representatives of the PIP, TIP, and NIP subfamilies. Plant Mol Biol 53:633-645
  44. Santoni V, Verdoucq L, Sommerer N, Vinh J, Pflieger D, Maurel C (2006) Methylation of aquaporins in plant plasma membrane. Biochem J 400:189-197 https://doi.org/10.1042/BJ20060569
  45. Takahashi H, Rai M, Kitagawa T, Morita S, Masumura T, Tanaka K (2004) Differential localization of tonoplast intrinsic proteins on the membrane of protein body Type II and aleurone grain in rice seeds. Biosci Biotechnol Biochem 68:1728-1736 https://doi.org/10.1271/bbb.68.1728
  46. Tornroth-Horsefield S, Wang Y, Hedfalk K, Johanson U, Karlsson M, Tajkhorshid E, Neutze R, Kjellbom P (2006) Structural mechanism of plant aquaporin gating. Nature 439:688-694 https://doi.org/10.1038/nature04316
  47. Tournaire-Roux C, Sutka M, Javot H, Gout E, Gerbeau P, Luu DT, Bligny R, Maurel C (2003) Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins. Nature 425:393-397 https://doi.org/10.1038/nature01853
  48. Uehlein N, Lovisolo C, Siefritz F, Kaldenhoff R (2003) The tobacco aquaporin NtAQP1 is a membrane CO2 pore with physiological functions. Nature 425:734-737 https://doi.org/10.1038/nature02027
  49. Vlad F, Turk BE, Peynot P, Leung J, Merlot S (2008) A versatile strategy to define the phosphorylation preferences of plant protein kinases and screen for putative substrates. Plant J 55:104-117 https://doi.org/10.1111/j.1365-313X.2008.03488.x
  50. Whiteman SA, Nuhse TS, Ashford DA, Sanders D, Maathuis FJ (2008) A proteomic and phosphoproteomic analysis of Oryza sativa plasma membrane and vacuolar membrane. Plant J 56:146-156 https://doi.org/10.1111/j.1365-313X.2008.03578.x
  51. Zhao FJ, Ago Y, Mitani N, Li RY, Su YH, Yamaji N, McGrath SP, Ma JF (2010) The role of the rice aquaporin Lsi1 in arsenite efflux from roots. New Phytol 186:392-399 https://doi.org/10.1111/j.1469-8137.2010.03192.x
  52. Zouhar J, Rojo E (2009) Plant vacuoles: where did they come from and where are they heading? Curr Opin Plant Biol 12:677-684 https://doi.org/10.1016/j.pbi.2009.08.004