DOI QR코드

DOI QR Code

Preparation and Characterization of Genetically Engineered Mesenchymal Stem Cell Aggregates for Regenerative Medicine

  • Kim, Sun-Hwa (Severance Integrative Research Institute for Cerebral & Cardiovascular Disease, Yonsei University Health System) ;
  • Moon, Hyung-Ho (Severance Integrative Research Institute for Cerebral & Cardiovascular Disease, Yonsei University Health System) ;
  • Chung, Bong-Genn (Department of Bionano Engineering, Hanyang University ERICA Campus) ;
  • Choi, Dong-Hoon (Severance Integrative Research Institute for Cerebral & Cardiovascular Disease, Yonsei University Health System)
  • Received : 2010.07.20
  • Accepted : 2010.07.29
  • Published : 2010.12.20

Abstract

Combining cell- and gene-based therapy is a promising therapeutic strategy in regenerative medicine. The aim of this study was to develop genetically modified mesenchymal stem cell (MSC) aggregates using a poly(ethylene glycol) (PEG) hydrogel micro-well array technique. Stable PEG hydrogel micro-well arrays with diameters of 200 to $500\;{\mu}m$ were fabricated and used to generate genetically engineered MSC aggregates. Rat bone marrow-derived MSCs were transfected with a green fluorescent protein (GFP) plasmid as a reporter gene, and aggregated by culturing in the PEG hydrogel micro-well arrays. The resultant cell aggregates had a mean diameter of less than $200\;{\mu}m$, and maintained the mesenchymal phenotype even after genetic modification and cell aggregation. Transplantation of MSC aggregates that are genetically modified to express therapeutic or cell-survival genes may be a potential therapeutic approach for regenerative medicine.

Keywords

References

  1. Chang, W., Song, B., Lim, S., Song, H., Shim, C.Y., Cha, M., Ahn, D.H., Jung, Y., Lee, D., Chung, J.H., Choi, K., Lee, S., Chung, N., Lee, S., Jang, Y., Hwang, K., 2009. Mesenchymal stem cells pretreated with delivered Hph-1Hsp70 protein are protected from hypoxia-mediated cell death and rescue heart functions form myocardial injury. Stem Cells 27, 2283-2292. https://doi.org/10.1002/stem.153
  2. Cheng, Z., Ou, L., Zhou, X., Li, F., Jia, X., Zhang, Y., Liu, X., Li, Y., Ward, C.A., Melo, L.G., Kong, D., 2008. Targeted migration of mesenchymal stem cells modified with CXCR4 gene to infarcted myocardium improves cardiac performance. Mol. Ther. 16, 571-579. https://doi.org/10.1038/sj.mt.6300374
  3. Gallego-Perez, D., Higuita-Castro, N., Sharma, S., Reen, R.K., Palmer, A.F., Gooch, K.J., Lee, L.J., Lannutti, J.J., Hansford, D.J., 2010. High throughput assembly of spatially controlled 3D cell clusters on a micro/nanoplatfom. Lab Chip 10, 775-782. https://doi.org/10.1039/b919475d
  4. Haleem-Smith, H., Derfoul, A., Okafor, C., Tuli, R., Olsen, D., Hall, D.J., Tuan, R.S., 2005. Optimization of high-efficiency transfection of adult human mesenchymal stem cells in vitro. Mol. Biotechnol. 30, 9-19. https://doi.org/10.1385/MB:30:1:009
  5. Humes, H.D., 2003. Cell therapy: leveraging nature’s therapeutic potential. J. Am. Soc. Nephrol. 14, 2211-2213. https://doi.org/10.1097/01.ASN.0000082692.79381.96
  6. Kato, K., Gurdon, J.B., 1993, Single-cell transplantation determines the time when Xenopus muscle precursor cells acquire a capacity for autonomous differentiation. Proc. Natl. Acad. Sci. USA 90, 1310-1314. https://doi.org/10.1073/pnas.90.4.1310
  7. Mosca, J.D., Hendricks, J.K., Buyaner, D., Davis-Sproul, J., Chuang, L.C., Majumdar, M.K., Chopra, R., Barry, F., Murphy, M., Thiede, M.a., Junker, U., Rigg, R.J, Forestell, S.P., Bohnlein, E., Storb, R., Sandmaier, B.M., 2000. Mesenchymal stem cells as vehicles for gene delivery. Clin. Orthop. Rel. Res, 379, S71-90. https://doi.org/10.1097/00003086-200010001-00011
  8. Noiseux, N., Gnecchi, M., Lopez-Ilasaca, M., Zhang, L., Solomon, S.D., Deb A., Dzau, V.J., Pratt, R.E., 2006. Mesenchymal stem cells overexpressing Akt dramatically repair infarcted myocardium and improve cardiac function despite infrequent cellular fusion or differentiation. Mol. Ther. 14, 840-850. https://doi.org/10.1016/j.ymthe.2006.05.016
  9. Otani, K., Yamahara, K., Ohnishi, S., Obata, H., Kitamura, S., Nagaya, N., 2009. Nonviral delivery of siRNA into mesenchymal stem cells by a combination of ultrasound and microbubbles. J. Control. Release 133, 146-153. https://doi.org/10.1016/j.jconrel.2008.09.088
  10. Pittenger, M.F., Martin, B.J., 2004. Mesenchymal stem cells and their potential as cardiac therapeutics. Circ. Res. 95, 9-20. https://doi.org/10.1161/01.RES.0000135902.99383.6f
  11. Pons, J., Huang, Y., Arakawa-Hoyt, J., Washko, D., Takagawa, J., Ye, J., Grossman, W., Su, H., 2008. VEGF improves survival of mesenchymal stem cells in infarcted hearts. Biochem. Biophys. Res. Commun. 376, 419-422. https://doi.org/10.1016/j.bbrc.2008.09.003
  12. Ratcliff, A., 2008. Choosing the correct needle for neuroscience injections. American Biotechnology Laboratory (Newsletter) 26, 18-19.
  13. Sadat, S., Gehmert, S., Song, Y.H., Yen, Y., Bai, X., Gaiser, S., Klein, H., Alt, E., 2007. The cardioprotective effect of mesenchymal stem cells is mediated by IGF-I and VEGF. Biochem. Biophys. Res. Commun. 363, 674-679. https://doi.org/10.1016/j.bbrc.2007.09.058
  14. Song, H., Chang, W., Lim, S., Seo, H.S., Shim, C.Y., Park, S., Yoo, K.J., Kim, B.S., Min, B.H., Lee, H., Jang, Y., Chung, N., Hwang, K.C., 2007. Tissue transglutaminase is essential for integrin-mediated survival of bone marrow-derived mesenchymal stem cells. Stem Cells 25, 1431-1438. https://doi.org/10.1634/stemcells.2006-0467
  15. Tae, S.K., Lee, S.H., Park, J.S., Im, G.I., 2006. Mesenchymal stem cells for tissue engineering and regenerative medicine. Biomed. Mater. 1, 63-71. https://doi.org/10.1088/1748-6041/1/2/003
  16. Xue, C., Chin, S.Y., Khan, S.A., Yang, K., 2010. UV-defined flat PDMS stamps suitable for microcontact printing. Langmuir 26, 3739-3743. https://doi.org/10.1021/la902995j