DOI QR코드

DOI QR Code

Parenteral Formulations Based on Albumin Particulate Technology

  • Received : 2010.08.17
  • Accepted : 2010.10.05
  • Published : 2010.12.20

Abstract

Over the years, nanoparticle drug delivery systems have demonstrated versatile potentials in biological, medical and pharmaceutical applications. In the pharmaceutical industry nanotechnology research has mainly focused on providing controlled drug release, targeting their delivery to specific organs, and developing parenteral formulations for poorly water soluble drugs to improve their bioavailability. Achievement in polymer industry has generated numerous polymers applicable to designing nanoparticles. From viewpoints of product development, a nanocarrier material should meet requirements for biodegradability, biocompatibility, availability, and regulatory approval crieteria. Albumin is indeed a material that fulfills such requirements. Also, the commercialization of a first albumin-bound paclitaxel nanoparticle product (Abraxane$^{TM}$) has sparked renewed interests in the application of albumin in the development of nanoparticle formulations. This paper reviews the intrinsic properties of albumin, its suitability as a nanocarrier material, and albumin-based parenteral formulation approaches. Particularly discussed in detail are albumin-based particulate injectables such as Abraxane$^{TM}$. Information on key roles of albumin in the nab$^{TM}$ technology and representative manufacturing processes of albumin particulate products are provided. It is likely that albumin-based particulate technology would extend its applications in delivering drugs, polypeptides, proteins, vaccines, nucleic acids, and genes.

Keywords

References

  1. Altmayer, P., Büch, U., Büch, H.P., 1995. Arzneimittelforschung 45, 1053-1056.
  2. Avgoustakis, K., 2004. Pegylated poly(lactide) and poly(lactidecoglycolide) nanoparticles: preparation, properties and possible applications in drug delivery. Curr. Drug Deliv. 1, 321-333. https://doi.org/10.2174/1567201043334605
  3. Bagchi, P., Stewart, R.C., Mclntire, G.L., Minter, J.R., 1997. Microprecipitation of micro-nanoparticulate pharmaceutical agents. US Patent 5,662,883.
  4. Barraud, L., Merle, P., Soma, E., Lefrancois, L., Guerret, S., Chevallier, M., Dubernet, C., Couvreur, P., Trepo, C.,Vitvitski, L., 2005. Increase of doxorubicin sensitivity by doxorubicin-loading into nanoparticles for hepatocellular carcinoma cells in vitro and in vivo. J. Hepatol. 42, 736-743. https://doi.org/10.1016/j.jhep.2004.12.035
  5. Bodmeier, R., Chen, H., 1990. Indomethacin polymeric nanosuspensions prepared by microfluidization. J. Control. Release 12, 223-233. https://doi.org/10.1016/0168-3659(90)90103-Z
  6. Busch-vishniac, I., Buckman, A.B., Pavuluri, J.K., Wang, W., Qian, D., Mancevski, V., 1996. Noncontact position measurement system using optical sensors. US Patent 5,552,883.
  7. Carter, D.C., Ho, J.X., 1994. Structure of serum albumin. Adv. Protein Chem. 45, 153-203. https://doi.org/10.1016/S0065-3233(08)60640-3
  8. Chanasattru, W., Jones, O.G., Decker, E.A., McClements, D.J., 2009. Impact of cosolvents on formation and properties of biopolymer nanoparticles formed by heat treatment of ${\beta}$ -lactoglobulin-pectin complexes. Food Hydrocolloids 23, 2450-2457 https://doi.org/10.1016/j.foodhyd.2009.07.003
  9. Chen, G.Q., Lin, W., Coombes, A.G.A., Davis, S.S., Illum, L., 1994. Preparation of human serum albumin microspheres by a novel acetone-heat denaturation method. J. Microencapsulation 11, 395-407. https://doi.org/10.3109/02652049409034257
  10. Coombes, A.G.A., Breeze, V., Lin, W., Gray, T., Parker, K.G., Parker, T., 2001. Lactic acid-stabilized albumin for microsphere formation and biomedical coating. Biomaterials 22, 1-8. https://doi.org/10.1016/S0142-9612(00)00074-0
  11. Coombes, A.G.A., Lin, W., O'Hagen, D.T., Davis, S.S., 2003. Preparation of protein microspheres, films and coating. US Patent 6,592,844.
  12. Couvreur, P., Vauhtier, C., 2006. Nanotechnology: intelligent design to treat complex disease. Pharm. Res. 23, 1417-1450. https://doi.org/10.1007/s11095-006-0284-8
  13. Curry, S., Mandelkow, H., Brick, P., Franks, N., 1998. Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites. Nat. Struct. Biol. 5, 827-835. https://doi.org/10.1038/1869
  14. Damascelli, B., Cantu, G., Mattavelli, F., Tamplenizza, P., Bidoli, P., Leo, E., Dosio, F., Cerrotta, A.M., Di Tolla, G., Frigerio, L.F., Garbagnati, F., Lanocita, R., Marchiano, A., Patelli, G., Spreafico, C., Ticha, V., Vespro, V., Zunino, F., 2001. Intraarterial chemotherapy with polyoxyethylated castor oil free paclitaxel, incorporated in albumin nanoparticles (ABI-007): phase II study of patients with squamous cell carcinoma of the head and neck and anal canal: preliminary evidence of clinical activity. Cancer 92, 2592-2602. https://doi.org/10.1002/1097-0142(20011115)92:10<2592::AID-CNCR1612>3.0.CO;2-4
  15. De Garavilla, L., Liversidge, E.M., Liversidge, G.G., 1998. Reduction of intravenously administered nanoparticulate-formulation-induced adverse physiological reactions. US Patent 5,834,025.
  16. Desai, N., Trieu, V., Vao, R., Frankel, T., Soon-Shiong, P., 2004. SPARC expression in breast tumors may correlate to increased tumor distribution of nanoparticle albumin-bound paclitaxel (ABI-007) vs Taxol. Presented at the 27th Annual San Antonio Breast Cancer Symposium, San Antonio, Texas.
  17. Desai, N., Trieu, V., Yao, Z., Louie, L., Ci, S., Yang, A., Tao, C., De, T., Beals, B., Dykes, D., Noker, P., Yao, R., Labao, E., Hawkins, M., Soon-Shiong, P., 2006. Increased antitumor activity, intratumor paclitaxel concentrations, and endothelial cell transport of cremophor-free, albumin-bound paclitaxel, ABI-007, compared with cremophor-based paclitaxel. Clin. Cancer Res. 12, 1317-1324. https://doi.org/10.1158/1078-0432.CCR-05-1634
  18. Desai, N.P., Soon-Shiong, P., De, T.K., 2010. Methods and compositions for treating proliferative diseases. US Patent 7,780,984.
  19. Desai, N.P., Soon-Shiong, P., Sandford, P.A., Grinstaff, M.W., Suslick, K.S., 1995. Methods for in vivo delivery of substantially water insoluble pharmacologically active agents and compositions useful therefor. US Patent 5,439,686.
  20. Desai, N.P., Tao, C., Yang, A., Louie, L., Zheng, T., Yao, Z., Soon-Shiong, P., Magdassi, S., 1999. Protein stabilized pharmacologically active agents, methods for the preparation thereof and methods for the use thereof. US Patent 5,916,596.
  21. Desai, N.P., Yang, A., De, T., Ci, S.X., Soon-shiong, P., Trieu, V., Yao, O., Grim, B.B., 2005. Compositions and methods of delivery of pharmacological agents. US Patent app. Pub. No. 2005/0004002A1.
  22. Doegito, E., Fessi, H., Appel, M., Puisieux, F., Bolard, J., Devissaguet, J.P., 1994. New techniques for preparing submicronic emulsions-application to Amphotericine-B. STP Pharma Sciences 4, 155-162.
  23. Dreis, S., Rothweiler, F., Michaelis, M., Cinatl Jr., J., Kreuter, J., Langer, K., 2007. Preparation, characterisation and maintenance of drug efficacy of doxorubicin-loaded human serum albumin (HSA) nanoparticles. Int. J. Pharm. 341, 207-214. https://doi.org/10.1016/j.ijpharm.2007.03.036
  24. Duncan, R., 2003. The dawning era of polymer therapeutics. Nat. Rev. Drug Discov. 2, 347-360. https://doi.org/10.1038/nrd1088
  25. Dye, D., Watkins, J.,1980. Suspected anaphylactic reaction to Cremophor EL. Br. Med. J. 280, 1353.
  26. Eatock, M., Church, N., Harris, R., Angerson, W., McArdle, C., French, R., Twelves, C., 1999. Activity of doxorubicin covalently bound to a novel human serum albumin microcapsule. Invest. New Drugs 17, 111-120. https://doi.org/10.1023/A:1006362915317
  27. Faithfull, N.S., Cain, S.M., 1988. Cardiorespiratory consequences of flurocarbon reactions in dogs. Bio. Art. Organs 16, 463-472.
  28. Fehske, K.J., Muller, W.E., Wollert, U., 1981. The location of drug binding sites in human serum albumin. Biochem Pharmacol. 30, 687-692. https://doi.org/10.1016/0006-2952(81)90151-9
  29. Garrido, M.J., Jimenez, R.M., Rodriguez-Sasiain, J.M., Aguirre, C., Aguilera, L., Calvo, R., 1994. Caracterizacion de la fijacion de propofol a las proteinas plasmaticas y posibles interacciones. Rev. Esp. Anestestiol. Reanim. 41, 308-312.
  30. Gelderblom, H., Verweij, J., Nooter, K., Sparreboom A., 2001. Cremophor EL: The drawbacks and advantages of vehicle selection for drug formulation. Eur. J. Cancer 37, 1590-1598. https://doi.org/10.1016/S0959-8049(01)00171-X
  31. Gianni, L., Kearns, C.M., Giani, A., Capri, G., Vigano, L., Lacatelli, A., Bonadonna, G., Egorin, M.J., 1995. Nonlinear pharmacokinetics and metabolism of paclitaxel and its pharmacokinetic/pharmacodynamic relationships in humans. J. Clin. Oncol. 13, 180-190. https://doi.org/10.1200/JCO.1995.13.1.180
  32. Gligorov, J., Lotz, J.P., 2004. Preclinical pharmacology of the taxanes: implications of the differences. Oncologist 9, 3-8.
  33. Gradishar, W.J., Tjulandin, S., Davidson, N., Shaw, H., Desai, N., Bhar, P., Hawkins, M., O’Shaughnessy, J., 2005. Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J. Clin. Oncol. 23, 7794-7803. https://doi.org/10.1200/JCO.2005.04.937
  34. Gregoriadis, G., Da Silva, H., Florence, A.T., 1990. A procedure for the efficient entrapment of drugs in dehydration-rehydration liposomes (DRVs). Int. J. Pharm. 65, 235-242. https://doi.org/10.1016/0378-5173(90)90148-W
  35. Grunewalder, J.F., Voelker, M.A., 1993. Water-borne treatment compositions for porous substrates. US Patent 5,228,905.
  36. Hawkins, M.J., Soon-Shiong, P., Desai, N., 2008. Protein nanoparticles as drug carriers in clinical medicine. Advanced Drug Delivery Reviews 60, 876-885. https://doi.org/10.1016/j.addr.2007.08.044
  37. He, X.M., Carter, D.C., 1992. Atomic structure and chemistry of human serum albumin. Nature 358, 209-215. https://doi.org/10.1038/358209a0
  38. Holmes, D.L., Thibaudeau, K., L'Archevêque, B., Milner, P.G., Ezrin, A.M., Bridon, D.P., 2000. Site specific 1:1 opoid:albumin conjugate with in vitro activity and long in vivo duration. Bioconjugate Chemistry 11, 439-444. https://doi.org/10.1021/bc0000233
  39. Howard, K.A., Kjems, J., 2007. Polycation-based nanoparticle delivery for improved RNA interference therapeutics. Expert. Opin. Biol. Ther. 7, 1811–1822.
  40. Ibrahim, N.K., Desai, N., Legha, S., Soon-Shiong, P., Theriault, R.L., Rivera, E., Esmaeli, B., Ring, S.E., Bedikian, A., Hortobagyi, G.N., Ellerhorst, J.A., 2002. Phase I and pharmacokinetic study of ABI-007, a cremophor-free, proteinstabilized, nanoparticle formulation of paclitaxel. Clin. Cancer Res. 8, 1038-1044.
  41. Ikuta, S., Chuang, V.T.G., Ishima, Y., Nakajou, K., Furukawa, M., Watanabe, H., Maruyama, T., Otagiri, M., 2010. Albumin fusion of thioredoxinæThe production and evaluation of its biological activity for potential therapeutic applications. J. Control. Release 147, 17-23. https://doi.org/10.1016/j.jconrel.2010.05.020
  42. Jette, L., Léger, R., Thibaudeau, K., Benquet, C., Robitaille, M., Pellerin, I., Paradis, V., van Wyk, P., Pham, K., Bridon D.P., 2005. Human growth hormone-release factor (hGRF)1-29-albumin bioconjugates activate the GRF receptor on the anterior pituitary in rats: Identification of CJC-1295 as a long-lasting GRF analog. Endocrinology 146, 3052-3058. https://doi.org/10.1210/en.2004-1286
  43. John, T.A., Vogel, S.M., Tiruppathi, C., Malik, A.B., Minshall, R.D., 2003. Quantitative analysis of albumin uptake and transport in the rat microvessel endothelialmonolayer. Am. J. Physiol., Lung Cell. Mol. Physiol. 284, 187-196. https://doi.org/10.1152/ajplung.00152.2002
  44. Jung, T., Kamm, W., Breitenbach, A., Kaiserling, E., Xiao, J.X., Kissel, T., 2000. Biodegradable nanoparticles for oral delivery of peptides: is there a role for polymers to affect mucosal uptake? Eur. J. Pharm. Biopharm. 50, 147-160. https://doi.org/10.1016/S0939-6411(00)00084-9
  45. Kloover, J.S., den Bakker, M.A., Gelderblom, H., van Meerbeeck, J.P., 2004. Fatal outcome of a hypersensitivity reaction to paclitaxel: a critical review of premedication regimens. Br. J. Cancer 90, 304-305. https://doi.org/10.1038/sj.bjc.6601303
  46. Koosha, F., Muller, R.H., 1988. Nanoparticle production by microfluidization. Archiv Der Pharmazie 321, 680.
  47. Kragh-Hansen, U., 1981. Molecular aspects of ligand binding to serum albumin. Pharmacological Reviews 33, 17-53.
  48. Kreuter, J., 2004. Nanoparticles as drug delivery systems. In Nalwa, H.S. (Ed.), Encyclopedia of Nanoscience and Nanotechnology, vol. 7. American Scientific Publishers, Stevenson Ranch, USA, 161-180.
  49. Kumar, G.N., Walle, U.K., Bhalla, K.N., Walle, T., 1993. Binding of taxol to human plasma, albumin, and alpha1-acid glycoprotein. Research Communications in Chemical Pathology and Pharmacology 80, 337-344.
  50. Lambert, G., Fattal, E., Pinto-Alphandary, H., Gulik, A., Couvreur, P., 2000. Polyisobutylcyanoacrylate nanocapsules containing an aqueous core as a novel colloidal carrier for the delivery of oligonucleotides. Pharm. Res. 17, 707-714. https://doi.org/10.1023/A:1007582332491
  51. Langer, K., Balthasar, S., Vogel, V., Dinauer, N., von Briesen, H., Schubert, D., 2003. Optimization of the preparation process for human serum albumin (HSA) nanoparticles. Int. J. Pharm. 257, 169-180. https://doi.org/10.1016/S0378-5173(03)00134-0
  52. Lee, T.K., Sokoloski, T.D., Royer, G.P., 1981. Serum albumin beads: an injectable, biodegradable system for the sustained release of drugs. Science 213, 233-235. https://doi.org/10.1126/science.6787705
  53. Lidgate, D.M., Tranner, T., Shultz, R.M., Maskiewicz, R., 1990. Sterile filtration of a parenteral emulsion. Pharm. Res. 9, 860-863. https://doi.org/10.1023/A:1015836512890
  54. Liversidge, G.G., Cundy, K.C., Bishop, J.F., Czekai, D.A., 1992. Surface modified drug nanoparticles. US Patent 5,145,684.
  55. Liversidge, G.G., Liversidge, E., Sarpotdar, P.P., 1995. Surface modified anticancer nanoparticles. US Patent 5,399,363.
  56. Lorenz, W., Reimann, H.J., Schmal, A., Dormann, P., Schwarz, B., Neugebauer, E., Doenicke, A., 1977. Histamine release in dogs by Cremophore EL and its derivatives: Oxethylated oleic acid is the most effective constituent. Agents and Actions 7, 63-67. https://doi.org/10.1007/BF01964882
  57. Maeda, H., Wu, J., Sawa, T., Matsumura, Y., Hori, K., 2000. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control. Release 65, 271-284. https://doi.org/10.1016/S0168-3659(99)00248-5
  58. Meeh, L., Cacheris, W.P., 1994. Microfluidization of calcium/oxyanion-containing particles. US Patent 5,342,609.
  59. Merisko-Liversidge, E., Sarpotdar, P., Bruno, J., Hajj, S., Wei, L., Peltier, N., Rake, J., Shaw, J.M., Pugh, S., Polin, L., Jones, J., Corbett, T., Cooper, E., Liversidge, G.G., 1996. Formulation and antitumor activity evaluation of nanocrystalline suspensions of poorly soluble anticancer drugs. Pharm. Res. 13, 272-278. https://doi.org/10.1023/A:1016051316815
  60. Michaelis, K., Hoffmann, M.M., Dreis, S., Herbert, E., Alyautdin, R.N., Michaelis, M., Kreuter, J., Langer, K., 2006. Covalent linkage of apolipoprotein E to albumin nanoparticles strongly enhances drug transport into the brain. J. Pharm. Exp. Ther. 317, 1246-1253. https://doi.org/10.1124/jpet.105.097139
  61. Minshall, R.D., Tiruppathi, C., Vogel, S.M., Malik, A.B., 2002. Vesicle formation and trafficking in endothelial cells and regulation of endothelial barrier function. Histochem. Cell Biol. 117, 105-112. https://doi.org/10.1007/s00418-001-0367-x
  62. Morlock, M., Knoll, H., Winter, G., Kissel, T., 1997. Microencapsulation of rh-erythropoietin, using biodegradable poly (D,L-lactide-co-glycolide): protein stability and the effects of stabilizing excipients. Eur. J. Pharm. Biopharm. 43, 29-36. https://doi.org/10.1016/S0939-6411(96)00017-3
  63. Mosqueira, V.C., Legrand, P., Morgat, J.L., Vert, M., Mysiakine, E., Gref, R., Devissaguet, J.P., Barratt, G., 2001. Biodistribution of long-circulating PEG-grafted nanocapsules in mice: effects of PEG chain length and density. Pharm. Res. 18, 1411-1419. https://doi.org/10.1023/A:1012248721523
  64. Muller, G.M., Leuenberger, H., Kissel, T., 1996. Albumin nanospheres as carriers for passive drug targeting: an optimized manufacturing technique. Pharm. Res. 13, 32-37. https://doi.org/10.1023/A:1016064930502
  65. Ohkawa, K., Hatano, T., Yamada, K., Joh, K., Takada, K., Tsukada, Y., Matsuda, M., 1993. Bovine serum albumin-doxorubicin conjugate overcomes multidrug resistance in a rat hepatoma. Cancer Res. 53, 4238-4242.
  66. Paal, K., Muller, J., Hegedus, L., 2001. High affinity binding of paclitaxel to human serum albumin. Eur. J. Biochem. 268, 2187-2191. https://doi.org/10.1046/j.1432-1327.2001.02107.x
  67. Pavanetto, F., Genta, I., Giunchedi, P., Conti, B., Conte, U., 1994. Spray-dried albumin microspheres for the intra-articular delivery of dexamethasone. J. Microencapsulation 11, 445-454. https://doi.org/10.3109/02652049409034262
  68. Peters, T., 1985. Serum albumin, Adv. Protein Chem. 37, 161-245. https://doi.org/10.1016/S0065-3233(08)60065-0
  69. Porter, P.L., Sage, E.H., Lane, T.F., Funk, S.E., Gown, A.M., 1995. Distribution of SPARC in normal and neoplastic human tissue. J. Histochem. Cytochem. 43, 791-800. https://doi.org/10.1177/43.8.7622842
  70. Purcell, M., Neault, J.F., Tajmir-Riahi, H.A., 2000. Interaction of Taxol with human serum albumin. Biochim. Biophys. Acta. 1478, 61-68. https://doi.org/10.1016/S0167-4838(99)00251-4
  71. Reis, C.P., Neufeld, R.J., Ribeiro, A.J., Veiga, F., 2006. Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine 2, 8-21. https://doi.org/10.1016/j.nano.2005.12.003
  72. Rustgi, V.K., 2009. Albinterferon alfa-2b, a novel fusion protein of human albumin and human interferon alfa-2b, for chronic hepatitis C. Curr. Med. Res. Opin. 25, 991-1002. https://doi.org/10.1185/03007990902779186
  73. Sah, H., 1999. Stabilization of proteins against methylene chloride/water interface-induced denaturation and aggregation. J. Control. Release 58, 143-151. https://doi.org/10.1016/S0168-3659(98)00148-5
  74. Sheu, M.T., Moustafa, M.A., Sokoloski, T.D., 1986. Entrapment of bioactive compounds within native albumin beads: II. Effects of rate and extent of crosslinking on microbead properties. J. Parent. Sci. Technol. 40, 253-258.
  75. Sheu, M.T., Sokoloski, T.D., 1986. Entrapment of bioactive compounds within native albumin beads: III. Evaluation of parameters affecting drug release. J. Parent. Sci. Technol. 40, 259-265.
  76. Sheu, M.T., Sokoloski, T.D., 1991. Entrapment of bioactive compounds within native albumin beads: IV. Characterization of drug release from polydisperse systems. Int. J. Pharm. 71, 7-18. https://doi.org/10.1016/0378-5173(91)90062-S
  77. Slack, J.D., Kanke, M., Simmons, G.H., DeLuca, P.P., 1981. Acute hemadynamic effects and blood pool kinetics of polystyrene microspheres following intravenous administration. J. Pharm. Sci. 70, 660-664. https://doi.org/10.1002/jps.2600700621
  78. Sugio, S., Kashima, A., Mochizuki, S., Noda, M., Kobayashi, K., 1999. Crystal structure of human serum albumin at 2.5 ${\AA}$ resolution. Protein Eng. 12, 439-446.
  79. Talsma, H., Ozer, A.Y., VanBloois, L., Crommelin, D.J., 1989. The size reduction of liposomes with a high pressure homogenizer (microfluidizer): Characterization of prepared dispersions and comparison with conventional methods. Drug Dev. Ind. Pharm. 15, 197-207. https://doi.org/10.3109/03639048909040205
  80. Ten Tije, A.J., Verweij, J., Loos, W.J., Sparreboom, A., 2003. Pharmacological effects of formulation vehicles: implications for cancer chemotherapy. Clin. Pharmacokinet. 42, 665-685. https://doi.org/10.2165/00003088-200342070-00005
  81. Thibaudeau, K., Léger, R., Huang, X., Robitaille, M., Quraishi, O., Soucy, C., Bousquet-Gagnon, N., van Wyk, P., Paradis, V., Castaigne, J.P., Bridon, D., 2005. Synthesis and evaluation of insulin-human serum albumin conjugates. Bioconjugate Chemistry 16, 1000-1008. https://doi.org/10.1021/bc050102k
  82. Tomkin, G.H., 2009. Albiglutide, an albumin-based fusion of glucagon-like peptide 1 for the potential treatment of type 2 diabetes. Curr. Opin. Mol. Ther. 11, 579-588.
  83. Torchilin, V.P., Trubetskoy, V.S., 1995. Which polymers can make nanoparticulate drug carriers long-circulating? Adv. Drug Deliv. Rev. 16, 141-155. https://doi.org/10.1016/0169-409X(95)00022-Y
  84. Toub, N., Malvy, C., Fattal, E., Couvreur, P., 2006. Innovative nanotechnologies for the delivery of oligonucleotides and siRNA. Biomed. Pharmacother. 60, 607-620. https://doi.org/10.1016/j.biopha.2006.07.093
  85. Van Zuylen, L., Verweij, J., Sparreboom, A., 2001. Role of formulation vehicles in taxane pharmacology. Invest. New Drugs 19, 125-141. https://doi.org/10.1023/A:1010618632738
  86. Vauthier, C., Couvreur, P., 2000. Development of nanoparticles made of polysaccharides as novel drug carrier systems. In D.L. Wise (ed.), Handbook of Pharmaceutical Controlled Release Technology, Marcel Dekker, New York, 413-429.
  87. Violanto, M.R., 1989. Method for making uniformly sized particles from water-insoluble organic compounds. US Patent 4,826,689.
  88. Volcheck, G.W., Van Dellen, R.G., 1998. Anaphylaxis to intravenous cyclosporine and tolerance to oral cyclosporine: case report and review. Ann. Allergy, Asthma, & Immun. 80, 159-163. https://doi.org/10.1016/S1081-1206(10)62949-3
  89. Vorum, H., 1999. Reversible ligand binding to human serum albumin. Theoretical and clinical aspects. Dan Med Bull. 46, 379-399.
  90. Weber, C., Kreuter, J., Langer, K., 2000. Desolvation process and surface characteristics of HSA-nanoparticles. Int. J. Pharm. 196, 197-200. https://doi.org/10.1016/S0378-5173(99)00420-2
  91. Weiss, R.B., Donehower, R.C., Wiernik, P.H., Ohnuma, T., Gralla, R.J., Trump, D.L., Baker Jr., J.R., Van Echo, D.A., Von Hoff, D.D., Leyland-Jones, B., 1990. Hypersensitivity reactions from Taxol. J. Clin. Oncol. 8, 1263-1268. https://doi.org/10.1200/JCO.1990.8.7.1263
  92. Yang, L., Cui, F., Cun, D., Tao, A., Shi, K., Lin, W., 2007. Preparation, characterization and biodistribution of the lactone form of 10-hydroxycamptothecin (HCPT)-loaded bovine serum albumin (BSA) nanoparticles. Int. J. Phram. 340, 163-172. https://doi.org/10.1016/j.ijpharm.2007.03.028