DOI QR코드

DOI QR Code

Surface-attached Solid Dispersion

  • Received : 2010.09.07
  • Accepted : 2010.10.07
  • Published : 2010.12.20

Abstract

A novel surface-attached solid dispersion is designed to improve the solubility and oral bioavailability of poorly water-soluble drugs without crystalline change. Accordingly, it draws increasing interest because of excellent stability and no pollution for accomplishing enhanced solubility and bioavailability, which have recently been highlighted in connection with a number of higher value-added poorly water-soluble drugs. In addition, excellent stability can be attained when the poorly water-soluble drugs are not dissolved but dispersed in water and provide no crystallinity change. This solid dispersion is given by means of attaching the dissolved carriers such as hydrophilic polymer and surfactant to the surface of dispersed drug particles followed by changing the hydrophobic drug to hydrophilic form. The aim of the present review is to outline the preparation, physicochemical property and bioavailability of novel surface-attached solid dispersion with improved solubility and bioavailability of poorly water-soluble drugs without crystalline change.

Keywords

References

  1. Amidon, G.L., Lennernas. H., Shah. V.P., Crison JR., 1995. A theoretical basis for a biopharmaceutics durg classification : the correlation of in vitro drug product dissolution and in vivo bioavailability, Pharm. Res., 12, 413-420. https://doi.org/10.1023/A:1016212804288
  2. Buchanan. C.M., Buchanan. N.L., Edgar, K.J., Klein. S., Little, J.L., Ramsey, M.G., Ruble, K.M., Wacher, V.J., Wempe, M.F., 2007. Pharmacokinetics of itraconazole after intravenous and oral dosing of itraconazole-cyclodextrin formulations, J. Pharm. Sci., 96, 3100-3116. https://doi.org/10.1002/jps.20878
  3. Chiou, W.L., Riegelman, S., 1971. Pharmaceutical application of solid dispersion systems, J. Pharm. Sci., 73, 1281-1303.
  4. Choi, H.G., Lee, B.J., Yong, C.S., Rhee, J.D., Han, J.H., Lee, M.K., Park, K.M. and Kim, C.K., 2001. Terfenadine-a-cyclodextrin inclusion complex with the anti-histaminic activity enhancement, Drug Dev. Ind. Pharm., 27, 857-862. https://doi.org/10.1081/DDC-100107250
  5. Chutimaworapan, S., Ritthidej, G.C., Yonemochi, E., Oguchi, T. and Yamamoto, K., 2000. Effect of water-soluble carriers on dissolution characteristics of nifedipine solid dispersions, Drug Dev. Ind. Pharm., 26, 1141-1150. https://doi.org/10.1081/DDC-100100985
  6. Craig, D.Q.M., 2002. The mechanisms of drug release from solid dispersions in water-soluble polymers, Int. J. Pharm., 231, 131-144. https://doi.org/10.1016/S0378-5173(01)00891-2
  7. Doherty, C. and York, P., 1987. Mechanisms of dissolution of frusemide/PVP solid dispersions, Int. J. Pharm., 34, 197–205.
  8. Gupta, G.D., Jain, S., Jain, N.K., 1997. Formulation of an aqueous injection of flurbiprofen, Pharmazie, 52, 709-712.
  9. Holvoet, C., VanderHeyden, Y., Plaizier-Vercammen. J., 2007. Influence of preparation method on itraconazole oral solutions using cyclodextrins as complexing agents, Pharmazie, 62, 510-514.
  10. Joe, J.H., Lee, W.M. Park, Y.J., Joe, K.H., Oh, D.H., Seo, Y.G., Woo, J.S., Yong, C.S., Choi, H.G., 2010. Effect of the soliddispersion method on the solubility and crystalline property of tacrolimus, Int. J. Pharm., 395, 161–166.
  11. Jung, J.Y., Yoo, S.D., Lee, S.H., Kim, K.H., Yoon, D.S., Lee, K.H., 1999. Enhanced solubility and dissolution rate of itraconazole by a solid dispersion technique, Int. J. Pharm., 187, 209-218. https://doi.org/10.1016/S0378-5173(99)00191-X
  12. Kachrimanis, K., Nikolakakis, I., Malamataris, S., 2000. Spherical crystal agglomeration of ibuprofen by the solvent-change technique in presence of methacrylic polymers, J. Pharm. Sci., 89(2), 250–259.
  13. Khan, G.M., Jiabi, Z., 1998. Preparation, characterization and dissolution studies of ibuprofen solid dispersions using polyethylene glycol (PEG), talc and PEG-talc as dispersion carriers, Drug Dev. Ind. Pharm., 24, 455-462. https://doi.org/10.3109/03639049809085643
  14. Kim, C.K., Choi, J.Y., Yoon, Y.S., Gong, J.P., Choi, H.G., Kong, J.Y., Lee, B.J., 1997, Preparation and evaluation of dry elixir for the enhancement of dissolution rate of poorly water-soluble drugs, Int. J. Pharm., 106, 25-32. https://doi.org/10.1016/0378-5173(94)90272-0
  15. Kipp, J.E., 2004. The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs, Int. J. Pharm., 284, 109-122. https://doi.org/10.1016/j.ijpharm.2004.07.019
  16. Leuner, C. and Dressman, J., 2000. Improving drug solubility for oral delivery using solid dispersions, Eur. J. Pharm. Biopharm., 50, 47-60. https://doi.org/10.1016/S0939-6411(00)00076-X
  17. Li, D.X., Jang, K.Y., Kang, W.K., Bae, K.J., Lee, M.H., Oh, Y.K., Jee, J.P., Park, Y.J., OH, D.H., Seo, Y.G., Kim, Y.R., Kim, J.O., Woo, J.S., Yong, C.S., Choi, H.G., 2010. Enhanced solubility and bioavailability of sibutramine base by solid dispersion system with aqueous medium, Biol. Pharm. Bull., 33, 279-284. https://doi.org/10.1248/bpb.33.279
  18. Li, D.X., Oh, Y.K., Lim, S.J., Kim, J.O., Yang, H.J., Sung, J.H., Yong, C.S., Choi, H.G., 2008. Novel gelatin microcapsule with bioavailability enhancement of ibuprofen using spray drying technique, Int. J. Pharm., 355, 277-284. https://doi.org/10.1016/j.ijpharm.2007.12.020
  19. Miller, D.A., McConville, J.T., Yang, W., Williams, R.O., McGinity, J.W., 2007. Hot-melt extrusion for enhanced delivery of drug particles, J. Pharm. Sci., 96 (2), 361-376. https://doi.org/10.1002/jps.20806
  20. Newa, M., Bhandari, K.H., Li, D.X., Kwon, T.H., Kim, J.A., Yoo, B.K., Woo, J.S., Lyoo, W.S., Yong, C.S., Choi, H G., 2007. Preparation, characterization and in vivo evaluation of ibuprofen binary solid dispersions with poloxamer 188. Int. J. Pharm., 343, 228-237. https://doi.org/10.1016/j.ijpharm.2007.05.031
  21. Oh, D.H., Park, Y.J., Yang, H.J., Kim, Y.I., Kang, J.H., Hwang, D.H., Yong, C.S., Choi, H G., 2010. Physicochemical characterization and in vivo evaluation of flurbiprofen-loaded solid dispersion without crystalline change, Drug Deli., in press.
  22. Okimoto, K., Miyake, M., Ibuki, R., Yasumura, M., Ohnishi, N., Nakai, T., 1997. Dissolution mechanism and rate of solid dispersion particles of nilvadipine with hydroxypropylmethylcellulose, Int. J. Pharm., 159, 85-93. https://doi.org/10.1016/S0378-5173(97)00274-3
  23. Overhoff, K.A., Moreno. A., Miller, D.A., Johnston. K.P., WilliamsIII, R.O., 2007. Solid dispersions of itraconazole and enteric polymers made by ultra-rapid freezing, Int. J. Pharm., 336, 122-132. https://doi.org/10.1016/j.ijpharm.2006.11.043
  24. Park, K.M., Lee, M.K., Hwang, K.J., Kim, C.K., 1999. Phospholipid-based microemulsions of flurbiprofen by the spontaneous emulsification process, Int. J. Pharm., 183, 145-154. https://doi.org/10.1016/S0378-5173(99)00080-0
  25. Park, Y.J., Kwon, R., Quan, Q.Z., Oh, D.H., Kim, J.O., Hwang, M.R., Koo, Y.B., Yong, C.S., Woo, J.S., Choi, H.G., 2009a. Development of novel ibuprofen-loaded solid dispersion with improved bioavailability using aqueous solution, Arch. Pharm. Res., 33 (5), 767-772.
  26. Park, Y.J., Ryu, D.S., Li, D X., Quan, Q.Z., Oh, D.H., Kim, J.O., Seo, Y.G., Lee, Y.I., Yong, C.S., Woo, J.S., Choi, H.G., 2009b. Physicochemical characterization of tacrolimus-loaded solid dispersion with sodium carboxylmethyl cellulose and sodium lauryl sulphate, Arch. Pharm. Res., 32 (6), 893-898. https://doi.org/10.1007/s12272-009-1611-5
  27. Park, Y.J., Xuan, J.J., Oh, D.H., Balakrishnan, P., Yang, H.J., Yeo, W.H., Lee, M.K., Yong, C.S., Choi, H.G., 2010. Development of novel itraconazole-loaded solid dispersion without crystalline change with improved bioavailability, Arch. Pharm. Res., 33, 1217-1225. https://doi.org/10.1007/s12272-010-0812-2
  28. Taylor, L.S., Zografi, G., 1997. Spectroscopic characterization of interactions between PVP and indomethacin in amorphous molecular dispersions, Pharm. Res., 14, 1691-1698. https://doi.org/10.1023/A:1012167410376
  29. Walser, S., Hruby, R., Hesse, E., Heinzl, H., Mascher, H., 1997. Preliminary toxicokinetic study with different crystal forms of S (+)-ibuprofen (dexibuprofen) and R,S-ibuprofen in rats, Arznei. For., 47, 750-754.
  30. Yamashita, K., Nakate, T., Okimoto, K., Ohike, A., Tokunaga, Y., Ibuki, R., Higaki, K., Kimura, T., 2003. Establishment of new preparation method for solid dispersion formulation of tacrolimus, Int. J. Pharm., 267, 79-91. https://doi.org/10.1016/j.ijpharm.2003.07.010
  31. Yi, Y., Yoon, H.J., Kim, B.O., Shim, M., Kim, S.O., Hwang, S.J., Seo, M.H., 2007. A mixed polymeric micellar formulation of itraconazole : Characteristics, toxicity and pharmacokinetics, J. Control. Rel., 117, 59-67. https://doi.org/10.1016/j.jconrel.2006.10.001
  32. Yong, C.S., Yang, C.H., Rhee, J.D., Lee, B.J., Kim, D.C., Kim, D.D., Kim, C.K., Choi, J.S., Choi, H.G., 2004. Enhanced rectal bioavailability of ibuprofen in rats by poloxamer 188 and menthol, Int. J. Pharm., 269, 169-176. https://doi.org/10.1016/j.ijpharm.2003.09.013