DOI QR코드

DOI QR Code

Characterization of Individual Atmospheric Aerosols Using Quantitative Energy Dispersive-Electron Probe X-ray Microanalysis: A Review

  • Received : 2010.09.29
  • Accepted : 2010.11.12
  • Published : 2010.12.31

Abstract

Great concerns about atmospheric aerosols are attributed to their multiple roles to atmospheric processes. For example, atmospheric aerosols influence global climate, directly by scattering or absorbing solar radiations and indirectly by serving as cloud condensation nuclei. They also have a significant impact on human health and visibility. Many of these effects depend on the size and composition of atmospheric aerosols, and thus detailed information on the physicochemical properties and the distribution of airborne particles is critical to accurately predict their impact on the Earth's climate as well as human health. A single particle analysis technique, named low-Z particle electron probe X-ray microanalysis (low-Z particle EPMA) that can determine the concentration of low-Z elements such as carbon, nitrogen and oxygen in a microscopic volume has been developed. The capability of quantitative analysis of low-Z elements in individual particle allows the characterization of especially important atmospheric particles such as sulfates, nitrates, ammonium, and carbonaceous particles. Furthermore, the diversity and the complicated heterogeneity of atmospheric particles in chemical compositions can be investigated in detail. In this review, the development and methodology of low-Z particle EPMA for the analysis of atmospheric aerosols are introduced. Also, its typical applications for the characterization of various atmospheric particles, i.e., on the chemical compositions, morphologies, the size segregated distributions, and the origins of Asian dust, urban aerosols, indoor aerosols in underground subway station, and Arctic aerosols, are illustrated.

Keywords

References

  1. Aarnio, P., Yli-Tuomi, T., Kousa, A., Makela, T., Hirsikko, A., Hameri, K., Raisanen, M., Hillamo, R., Koskentalo, T., Jantunen, M. (2005) The concentrations and composition of and exposure to fine particles $(PM_{2.5})$ in the Helsinki subway system. Atmospheric Environment 39, 5059-5066. https://doi.org/10.1016/j.atmosenv.2005.05.012
  2. Adams, H.S., Nieuwenhuijsen, M.J., Colvile, R.N. (2001a) Determinants of fine particle $(PM_{2.5})$ personal exposure levels in transport microenvironments, London, UK. Atmospheric Environment 35, 4557-4566. https://doi.org/10.1016/S1352-2310(01)00194-7
  3. Adams, H.S., Nieuwenhuijsen, M.J., Colvile, R.N., Mc-Mullen, M.A.S., Khandelwal, P. (2001b) Fine particle $(PM_{2.5})$ personal exposure levels in transport microenvironments, London, UK. Science of the Total Environment 279, 29-44. https://doi.org/10.1016/S0048-9697(01)00723-9
  4. Ansari, A.S., Pandis, S.N. (1998) Response of inorganic PM to precursor concentrations. Environmental Science and Technology 32, 2706-2714. https://doi.org/10.1021/es971130j
  5. Armstrong, J.T., Buseck, P.R. (1985) A general characteristic fluorescence correction for the quantitative electron microbeam analysis of thick specimens, thin films and particles. X-Ray Spectrometry 14, 172-182. https://doi.org/10.1002/xrs.1300140408
  6. Armstrong, J.T. (1991) Electron Probe Quantitation (Heinrich K.F.J. and Newbury, D.E. Eds.), Plenum Press, New York, pp. 261-316.
  7. Athanasopoulou, E., Tombrou, M., Pandis, S.N., Russell, A.G. (2008) The role of sea-salt emissions and heterogeneous chemistry in the air quality of polluted coastal areas. Atmospheric Chemistry and Physics 8, 3807-3841.
  8. Beine, H.J., Krognes, T. (2000) The seasonal cycle of peroxyacetyl nitrate (PAN) in the European Arctic. Atmospheric Environment 34, 933-940. https://doi.org/10.1016/S1352-2310(99)00288-5
  9. Beine, H.J., Domine, F., Ianniello, A., Nardino, M., Allegrini, I., Teinila, K., Hillamo, R. (2003) Fluxes of nitrates between snow surfaces and the atmosphere in the European high Arctic. Atmospheric Chemistry and Physics 3, 335-346. https://doi.org/10.5194/acp-3-335-2003
  10. Birenzvige, A., Eversole, J., Seaver, M., Francesconi, S, Valdes, E., Kulaga, H. (2003) Aerosol Characteristics in a Subway Environment. Aerosol Science Technology 37, 210-220. https://doi.org/10.1080/02786820300941
  11. Bishop, A.N., Kearsley, A.T., Patience, R.L. (1992) Analysis of sedimentary organic materials by scanning electron microscopy: the application of backscattered electron imagery and light element X-ray microanalysis. Organic Geochemistry 18, 431-446. https://doi.org/10.1016/0146-6380(92)90106-8
  12. Branis, M. (2006) The contribution of ambient sources to particulate pollution in spaces and trains of the Prague underground transport system. Atmospheric Environment 40, 348-356. https://doi.org/10.1016/j.atmosenv.2005.09.060
  13. Carmichael, G.R., Hong, M., Ueda, H., Chen, L., Murano, K., Park, J.K., Lee, H., Kim, Y., Shim, S. (1997) Aerosol Composition at Cheju Island, Korea. Journal of Geophysical Research D5, 6047-6061.
  14. Carson, P.G., Johnston, M.V., Wexler, A.S. (1997) Real-Time Monitoring of the Surface and Total Composition of Aerosol Particles. Aerosol Science and Technology 26, 291-300. https://doi.org/10.1080/02786829708965431
  15. Chapin, III, F.S., Sturm, M., Serreze, M.C., McFadden, J.P., Key, J.R., Lloyd, A.H., McGuire, A.D., Rupp, T.S., Lynch, A.H., Schimel, J.P., Beringer, J., Chapman, W.L., Epstein, H.E., Euskirchen, E.S., Hinzman, L.D., Jia, G., Ping, C.-L., Tape, K.D., Thompson, C.D.C., Walker, D.A., Welker J.M. (2005) Role of landsurface changes in arctic summer warming. Science 310, 657-660. https://doi.org/10.1126/science.1117368
  16. Chen, Y., Shah, N., Braun, A., Huggins, F.E., Huffman, G.P. (2005) Electron microscopy investigation of carbonaceous particulate matter generated by combustion of fossil fuels. Energy Fuels 19, 1644-1651. https://doi.org/10.1021/ef049736y
  17. Chillrud, S.N., Epstein, D., Ross, J.M., Sax, S.N., Pederson, D., Spengler, J.D., Kinney, P.L. (2004) Elevated Airborne Exposures of Teenagers to Manganese, Chromium, and Iron from Steel Dust and New York City’s Subway System. Environmental Science and Technology 36, 732-737.
  18. Chow, J.C., Liu, C.S., Cassmassi, J., Watson, J.G., Lu, Z., Pritchett, L.C. (1992) A neighborhood-scale study of $PM_{10}$. Atmospheric Environment 26A, 693-706.
  19. Dentener, F.J., Carmichael, G.R., Zhang, Y., Lelieveld, J., Crutzen, P.J. (1996) Role of mineral aerosol as a reactive surface in the global troposphere. Journal of Geophysical Research D17, 22869-22889.
  20. Drouin, D., Hovington, P., Gauvin, R. (1997) CASINO: A New Monte Carlo Code in C Language for Electron Beam Interactions-Part II: Tabulated Values of the Mott Cross Section. Scanning 19, 20-28. https://doi.org/10.1002/sca.4950190103
  21. Friedman, B., Herich, H., Kammermann, L., Gross, D.S., Arneth, A., Holst, T., Cziczo, D.J. (2009) Subarctic atmospheric aerosol composition: 1. Ambient aerosol characterization. Journal of Geophysical Research 114, D13203, doi:10.1029/2009JD011772.
  22. Frustorfer, P., Niessner, R. (1994) Identification and Classification of Airborne soot Particles Using an Automated SEM/EDX. Mikrochimica Acta 113, 239-250. https://doi.org/10.1007/BF01243614
  23. Furuya, K., Kudo, Y., Okinaga, K., Yamuki, M., Takahashi, S., Araki, Y., Hisamatsu, Y. (2001) Seasonal variation and their characterization of suspended particulate matter in the air of subway stations. Journal of Trace and Microprobe Techniques 19, 469-485. https://doi.org/10.1081/TMA-100107583
  24. Gard, E., Mayer, J.E., Morrical, B.D., Dienes, T., Fergenson, D.P., Prather, K.A. (1997) Real-Time Analysis of Individual Atmospheric Aerosol Particles: Design and Performance of a Portable ATOFMS. Analytical Chemistry 69, 4083-4091. https://doi.org/10.1021/ac970540n
  25. Gard, E.E., Kleeman, M.J., Gross, D.S., Hughes, L.S., Allen, J.O., Morrical, B.D., Fergenson, D.P., Dienes, T., Galli, M.E., Johnson, R.J., Cass, G.R., Prather, K.A. (1998) Direct observation of heterogeneous chemistry in the atmosphere. Science 279, 1184-1187. https://doi.org/10.1126/science.279.5354.1184
  26. Geng, H., Jung, H.-J., Park, Y., Hwang, H., Kim, H., Kim, Y.J., Sunwoo, Y., Ro, C.-U. (2009a) Morphological and chemical composition characteristics of summertime atmospheric particles collected at Tokchok Island, Korea. Atmospheric Environment 43, 3364-3373. https://doi.org/10.1016/j.atmosenv.2009.03.034
  27. Geng, H., Park, Y., Hwang, H., Kang, S., Ro, C.-U. (2009b) Elevated nitrogen-containing particles observed in Asian dust aerosol samples collected at the marine boundary layer of the Bohai Sea and the Yellow Sea. Atmospheric Chemistry and Physics 9, 6933-6947. https://doi.org/10.5194/acp-9-6933-2009
  28. Geng, H., Ryu, J., Jung, H.-J., Chung, H., Ahn, K., Ro, C.-U. (2010) Single-Particle Characterization of Summertime Arctic Aerosols Collected at Ny-Alesund, Svalbard, Environmental Science and Technology 44, 2348-2353. https://doi.org/10.1021/es903268j
  29. Goldstein, J.I., Newbury, D.E., Joy, D.C., Lyman, C., Echlin, P., Lifshin, E., Sawyer, L., Michael, J. (2003) Scanning Electron Microscopy and X-ray Microanalysis (3rd Ed.) Kluwer-Plenum, New York, pp. 391-450.
  30. Hamilton, R.S., Kershaw, P.R., Segarra, F., Spears C.J., Watt, J.M. (1994) Detection of airborne carbonaceous particulate matter by scanning electron microscopy. Science of the Total Environment 146/147, 303-308. https://doi.org/10.1016/0048-9697(94)90250-X
  31. Harrington, P.B., Street, T.E., Voorhees, K.J., di Brozolo, F.R., Odom, R.W. (1989) Rule-Building Expert System for Classification of Mass Spectra. Analytical Chemistry 61, 715-719. https://doi.org/10.1021/ac00182a015
  32. Hoffman, R.C., Laskin A., Finlayson-Pitts, B.J. (2004) Sodium nitrate particles: physical and chemical properties during hydration and dehydration, and implications for aged sea salt aerosols. Journal of Aerosol Science 35, 869-887. https://doi.org/10.1016/j.jaerosci.2004.02.003
  33. Hopkins, R.J., Desyaterik, Y., Tivanski, A.V., Zaveri, R.A., Berkowitz, C.M., Tyliszczak, T., Gilles, M.K., Laskin, A. (2008) Chemical speciation of sulfur in marine cloud droplets and particles: Analysis of individual particles from the marine boundary layer over the California current. Journal of Geophysical Research 113, D04209, doi:10.1029/2007JD008954.
  34. Hovington, P., Drouin, D., Gauvin, R. (1997a) CASINO: A New Monte Carlo Code in C Language for Electron Beam Interactions-Part I: Description of the Program. Scanning 19, 1-14. https://doi.org/10.1002/sca.4950190101
  35. Hovington, P., Drouin, D., Gauvin, R., Joy, D.C., Evans, N. (1997b) CASINO: A New Monte Carlo Code in C Language for Electron Beam Interactions-Part III: Stopping Power at Low Energies. Scanning 19, 29-35. https://doi.org/10.1002/sca.4950190104
  36. Hughes, L.S., Allen, J.O., Kleeman, M.J., Johnson, R.J., Cass, G.R., Gross, D.S., Gard, E.E., Galli, M.E., Morrical, B.D., Fergenson, D.P., Dienes, T., Noble, C.A., Liu, D.Y., Silva, P.J., Prather, K.A. (1999) Size and Composition Distribution of Atmospheric Particles in Southern California. Environmental Science and Technology 33, 3506-3515. https://doi.org/10.1021/es980884a
  37. Hwang, H., Ro, C.-U. (2006) Direct observation of nitrate and sulfate formations from mineral dust and sea-salts using low-Z particle electron probe X-ray microanalysis. Atmospheric Environment 40, 3869-3880. https://doi.org/10.1016/j.atmosenv.2006.02.022
  38. Ianniello, A., Beine, H.J., Sparapani, R., Di Bari, F., Allegrini, I., Fuentes, J.D. (2002) Denuder measurements of gas and aerosol species above Arctic snow surfaces at Alert 2000. Atmospheric Environment 36, 5299-5309. https://doi.org/10.1016/S1352-2310(02)00646-5
  39. Jambers, W., Van Grieken, R. (1997) Single Particle Characterization of Inorganic Suspension in Lake Baikal, Siberia. Environmental Science and Technology 31, 1525-1533. https://doi.org/10.1021/es9608003
  40. Johansson, C., Johansson, P.-A. (2003) Particulate matter in the underground of Stockholm. Atmospheric Environment 37, 3-9.
  41. Karlsson, H.L., Nilsson, L., Moller, L. (2005) Subway Particles Are More Genotoxic than Street Particles and Induce Oxidative Stress in Cultured Human Lung Cells. Chemical Research and Toxicology 18, 19-23. https://doi.org/10.1021/tx049723c
  42. Karlsson, H.L., Ljungman, A.G., Lindbom, J., Moller, L. (2006) Comparison of genotoxic and inflammatory effects of particles generated by wood combustion, a road simulator and collected from street and subway. Toxicological Letter, 165, 203-211. https://doi.org/10.1016/j.toxlet.2006.04.003
  43. Kang, S., Hwang, H., Park, Y., Kim, H., Ro, C.-U. (2008) Chemical compositions of subway particle in Seoul, Korea determined by a quantitative single particle analysis. Environmental Science and Technology 42, 9051-9057. https://doi.org/10.1021/es802267b
  44. Kang, S., Hwang, H., Kang, S., Park, Y., Kim, H., Ro, C.-U. (2009) Quantitative ED-EPMA combined with morphological information for the characterization of individual aerosol particles collected in Incheon, Korea. Atmospheric Environment 43, 3445-3453. https://doi.org/10.1016/j.atmosenv.2009.05.008
  45. Kawamura, K., Narukawa, M., Li, S.-M., Barrie, L.A. (2007) Size distributions of dicarboxylic acids and inorganic ions in atmospheric aerosols collected during polar sunrise in the Canadian high Arctic. Journal of Geophysical Research 112, D10307, doi:10.1029/2006JD008244.
  46. Koutny, L.B., Yeung, E.S. (1993) Expert System for Data Acquisition To Achieve a Constant Signal-to-Noise Ratio: Application to Imaging of DNA Sequencing Gels. Analytical Chemistry 65, 148-152. https://doi.org/10.1021/ac00050a010
  47. Krueger, B.J., Grassian, V.H., Cowin, J.P., Laskin, A. (2004) Heterogeneous chemistry of individual mineral dust particles from different dust source regions: the importance of particle mineralogy. Atmospheric Environment 38, 6253-6261. https://doi.org/10.1016/j.atmosenv.2004.07.010
  48. Laskin, A., Iedema, M.J., Cowin, J.P. (2002) Quantitative time-resolved monitoring of nitrate formation in sea salt particles using a CCSEM/EDX single particle analysis. Environmental Science and Technology 36, 4948-4955. https://doi.org/10.1021/es020551k
  49. Laskin, A., Gaspar, D.J., Wang, W., Hunt, S.W., Cowin, J.P., Colson, S.D., Finlayson-Pitts, B.J. (2003) Reactions at interfaces as a source of sulfate formation in sea-salt particles. Science 301, 340-344. https://doi.org/10.1126/science.1085374
  50. Laskin, A., Smith, J., Laskin, J. (2009) Molecular characterization of nitrogen-containing organic compounds in biomass burning aerosols using high-resolution mass spectrometry. Environmental Science and Technology 43, 3764-3771. https://doi.org/10.1021/es803456n
  51. Labar, J.L., Torok, S. (1992) A Peak-to-Background Method for Electron Probe X-Ray Microanalysis Applied to Individual Small Particles. X-Ray Spectrometry 21, 183-190. https://doi.org/10.1002/xrs.1300210407
  52. Law, K.S., Stohl, A. (2007) Arctic Air Pollution: Origins and Impacts. Science 315, 1537-1540. https://doi.org/10.1126/science.1137695
  53. Lohmann, U., Leck, C. (2005) Importance of submicron surface-active organic aerosols for pristine Arctic clouds. Tellus 57B, 261-268.
  54. May, K.R. (1975) An ultimate cascade impactor for aerosol assessment. Journal of Aerosol Science 6, 1-7. https://doi.org/10.1016/0021-8502(75)90036-1
  55. Morin, S., Savarino, J., Frey, M.M., Yan, N., Bekki, S., Bottenheim, J.W., Martins, J.M. (2008) Tracing the origin and fate of $NO_x$ in the Arctic atmosphere using stable isotopes in nitrate. Science 322, 730-732. https://doi.org/10.1126/science.1161910
  56. Murphy, D.M., Thomson, D.S. (1997a) Chemical composition of single aerosol particles at Idaho Hill: Positive ion measurements. Journal of Geophysical Research 102, 6341-6352. https://doi.org/10.1029/96JD00858
  57. Murphy, D.M., Thomson, D.S. (1997b) Chemical composition of single aerosol particles at Idaho Hill: Negative ion measurements. Journal of Geophysical Research 102, 6353-6368. https://doi.org/10.1029/96JD00859
  58. Noble, C.A., Prather, K.A. (1996) Real-Time Measurement of Correlated Size and Composition Profiles of Individual Atmospheric Aerosol Particles. Environmental Science and Technology 30, 2667-2680. https://doi.org/10.1021/es950669j
  59. Nyeki, S., Coulson, G., Colbeck, I., Eleftheriadis, K., Baltensperger, U., Beine, H.J. (2005) Overview of aerosol microphysics at Arctic sunrise: measurements during the NICE renoxification study. Tellus 57B, 40-50.
  60. Ohta, S., Fukasawa, T., Muroa, N., Makarov, V.N. (1995) Summer concentrations of atmospheric pollutants in urban and rural areas of Siberia. Journal of Global Environmental Engineering 1, 15-26.
  61. Osan, J., Torok, S., Torok, K., Nemeth, L., Labar, J.L. (1996) Physiological effect of accidental fly ash deposition on plants and chemical study of the dusted plant leaves by XRF and EPMA. X-ray Spectrometry 25, 167-172. https://doi.org/10.1002/(SICI)1097-4539(199607)25:4<167::AID-XRS156>3.0.CO;2-U
  62. Osan, J., Szaloki, I., Ro, C.-U., Van Grieken, R. (2000) Light Element Analysis of Individual Microparticles Using Thin-Window EPMA. Mikrochimica Acta 132, 349-355. https://doi.org/10.1007/s006040050079
  63. Polissar, A.V., Hopke, P.K., Piorot, R.L. (2001) Atmospheric Aerosol over Vermont: Chemical Composition and Sources. Environmental Science and Technology 35, 4604-4621. https://doi.org/10.1021/es0105865
  64. Posfai, M., Gelencser, A., Simonics, R., Arato, K., Li, J., Hobbs, P.V., Buseck, P.R. (2004) Atmospheric tar balls: Particles from biomass and biofuel burning. Journal of Geophysical Research 109, D06213, doi:10.1029/2003JD004169.
  65. Ro, C.-U., Osan, J., Van Grieken, R. (1999) Determination of low-Z elements in individual environmental particles using windowless EPMA. Analytical Chemistry 71, 1521-1528. https://doi.org/10.1021/ac981070f
  66. Ro, C.-U., Osan, J., Szaloki, I., Oh, K.-Y., Van Grieken, R. (2000) Determination of chemical species in individual aerosol particles using ultrathin window EPMA. Environmental Science and Technology 34, 3023-3030. https://doi.org/10.1021/es9910661
  67. Ro, C.-U., Oh, K.-Y., Kim, H., Chun, Y.-S., Osán, J., de Hoog, J., Van Grieken, R. (2001a) Chemical speciation of individual atmospheric particles using low-Z electron probe X-ray microanalysis: characterizing “Asian Dust” deposited with rainwater in Seoul, Korea. Atmospheric Environment 35, 4995-5005. https://doi.org/10.1016/S1352-2310(01)00287-4
  68. Ro, C.-U., Oh, K.-Y., Kim, H., Kim, Y.P., Lee, C.B., Kim, K.H., Osan, J., de Hoog, J., Worobiec, A., Van Grieken, R. (2001b) Single Particle Analysis of Aerosols at Cheju Island, Korea, Using Low-Z Electron Probe Xray Microanalysis: A Direct Proof of Nitrate Formation from Sea-Salts. Environmental Science and Technology 35, 4487-4494. https://doi.org/10.1021/es0155231
  69. Ro, C.-U., Kim, H., Oh, K.-Y., Yea, S.K., Lee, C.B., Jang, M., Van Grieken, R. (2002) Single-Particle Characterization of Urban Aerosol Particles Collected in Three Korean Cities Using Low-Z Electron Probe Xray Microanalysis. Environmental Science and Technology, 36, 4770-4776. https://doi.org/10.1021/es025697y
  70. Ro, C.-U., Osan, J., Szaloki, I., de Hoog, J., Worobiec, A., Van Grieken, R. (2003) A Monte Carlo program for quantitative electron-induced X-ray analysis of individual particles. Analytical Chemistry 75, 851-859. https://doi.org/10.1021/ac025973r
  71. Ro, C.-U., Kim, H., Van Grieken, R. (2004) An Expert System for Chemical Speciation of Individual Particles Using Low-Z Particle Electron Probe X-ray Microanalysis Data. Analytical Chemistry 76, 1322-1327. https://doi.org/10.1021/ac035149i
  72. Ro, C.-U., Hwang, H., Kim, H., Chun, Y., Van Grieken, R. (2005) Single-Particle Characterization of Four Asian Dust Samples Collected in Korea, Using Low-Z Particle Electron Probe X-ray Microanalysis. Environmental Science and Technology 39, 1409-1419. https://doi.org/10.1021/es049772b
  73. Salma, I., Weidinger, T., Maenhaut, W. (2007) Timeresolved mass concentration, composition and sources of aerosol particles in a metropolitan underground railway station. Atmospheric Environment 41, 8391-8405. https://doi.org/10.1016/j.atmosenv.2007.06.017
  74. Satheesh, S.K., Moorthy, K.K. (2005) Radiative effects of natural aerosols: A review, Atmospheric Environment 39, 2089-2110. https://doi.org/10.1016/j.atmosenv.2004.12.029
  75. Seaton, A., Cherrie, J., Dennekamp, M., Donaldson, K., Hurley, J.F., Tran, C.L. (2005) The London Underground: dust and hazards to health. Occupational and Environmental Medicine 62, 355-362. https://doi.org/10.1136/oem.2004.014332
  76. Sitzmann, B., Kendal, M., Williams, I. (1999) Characterisation of airborne particles in London by computer-controlled scanning electron microscopy. Science of the Total Environment 241, 63-73. https://doi.org/10.1016/S0048-9697(99)00326-5
  77. Sullivan, R.C., Guazzotti, S.A., Sodeman, D.A., Tang, Y., Carmichael, G.R., Prather, K.A. (2007) Mineral dust is a sink for chlorine in the marine boundary layer. Atmospheric Environment 41, 7166-7179. https://doi.org/10.1016/j.atmosenv.2007.05.047
  78. Szaloki, I., Osan, J., Ro, C.-U., Van Grieken, R. (2000) Quantitative characterization of individual aerosol particles by thin-window EPMA combined with iterative simulation. Spectrochimica Acta B55, 1017-1030.
  79. Teinila, K., Hillamo, R., Kerminen, V.-M., Beine, H.J. (2003) Aerosol chemistry during the NICE dark and light campaigns. Atmospheric Environment 37, 563-575. https://doi.org/10.1016/S1352-2310(02)00826-9
  80. Van Borm, W.A., Adams, F.C. (1989) Characterization of individual particles in the Antwerp aerosol. Atmospheric Environment 23, 1139-1151. https://doi.org/10.1016/0004-6981(89)90315-6
  81. Van Borm, W., Adams, F.C., Maenhaut, W. (1990) Receptor modeling of the Antwerp aerosol. Atmospheric Environment 24B, 419-435.
  82. Vekemans, B., Janssens, K., Vincze, L., Adams, F., Van Espen, P. (1994) Analysis of X-ray spectra by iterative least squares (AXIL): new developments. X-Ray Spectrometry 23, 278-285. https://doi.org/10.1002/xrs.1300230609
  83. Weast, R.C., Astle, M.J., Beyer, W.H., Eds. (1984) CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, FL, pF-154.
  84. Xie, Z., Sun, L., Blum, J.D., Huang, Y., He, W. (2006) Summertime aerosol chemical components in the marine boundary layer of the Arctic Ocean. Journal of Geophysical Research 111, D10309, doi:10.1029/2005JD006253.
  85. Xie, Z., Blum, J.D., Utsunomiya, S., Ewing, R.C., Wang, X., Sun, L. (2007) Summertime carbonaceous aerosols collected in the marine boundary layer of the Arctic Ocean. Journal of Geophysical Research 112, D02306, doi:10.1029/2006JD007247.
  86. Yamagata, S., Kobayashi, D., Ohta, S., Murao, N., Shiobara, M., Wada, M., Yabuki, M., Konishi, H., Yamanouchi, T. (2009) Properties of aerosols and their wet deposition in the arctic spring during ASTAR2004 at $Ny-{\AA}lesund$, Svalbard. Atmospheric Chemistry and Physics 9, 261-270. https://doi.org/10.5194/acp-9-261-2009
  87. Yang, G.P., Zhang, H.H., Su, L.P., Zhou, L.M. (2009) Biogenic emission of dimethylsulfide (DMS) from the North Yellow Sea, China and its contribution to sulfate in aerosol during summer. Atmospheric Environment 43, 2196-2203. https://doi.org/10.1016/j.atmosenv.2009.01.011
  88. Yli-Tuomi, T., Venditte, L., Hopke, P.K., Basunia, M.S., Landsberger, S., Viisanen, Y., Paatero, J. (2003) Composition of the Finnish Arctic aerosol: collection and analysis of historic filter samples. Atmospheric Environment 37, 2355-2364. https://doi.org/10.1016/S1352-2310(03)00164-X
  89. Zhang, D., Shi, G.Y., Iwasaka, Y., Hu, M. (2000) Mixture of sulfate and nitrate in coastal atmospheric aerosols: individual particle studies in Qingdao $(36^{\circ}04′N,\;120^{\circ}21′E)$, China. Atmospheric Environment 34, 2669-2679. https://doi.org/10.1016/S1352-2310(00)00078-9
  90. Zhang, W., Chait, B.T. (2000) ProFound: An Expert System for Protein Identification Using Mass Spectrometric Peptide Mapping Information. Analytical Chemistry 72, 2482-2489. https://doi.org/10.1021/ac991363o
  91. Zhang, Z., Friedlander, S.K. (2000) A Comparative Study of Chemical Databases for Fine Particle Chinese Aerosols. Environmental Science and Technology 34, 4687-4694. https://doi.org/10.1021/es001147t
  92. Zimmer, A.T., Biswas, P. (2001) Characterization of the aerosols resulting from arc welding processes. Journal of Aerosol Science 32, 993-1008.

Cited by

  1. (Atomic Number) Particle Electron Probe X-ray Microanalysis vol.61, pp.11, 2011, https://doi.org/10.1080/10473289.2011.604286
  2. Single-particle Characterization of Aerosol Particles Collected Nearby a Lead Smelter in China vol.6, pp.2, 2012, https://doi.org/10.5572/ajae.2012.6.2.083
  3. Installation of platform screen doors and their impact on indoor air quality: Seoul subway trains vol.64, pp.9, 2014, https://doi.org/10.1080/10962247.2014.923350
  4. Chemical Properties of the Individual Asian Dust Particles Clarified by Micro-PIXE Analytical System vol.8, pp.3, 2014, https://doi.org/10.5572/ajae.2014.8.3.154
  5. Thermal and Hygroscopic Properties of Indoor Particulate Matter Collected on an Underground Subway Platform vol.9, pp.3, 2015, https://doi.org/10.5572/ajae.2015.9.3.228
  6. Levels of formaldehyde and TVOCs and influential factors of 100 underground station environments from 2013 to 2015 vol.24, pp.4, 2018, https://doi.org/10.1080/10807039.2017.1405341
  7. Characterisation of individual aerosol particles collected during a haze episode in Incheon, Korea using the quantitative ED-EPMA technique vol.11, pp.3, 2010, https://doi.org/10.5194/acp-11-1327-2011
  8. Observation of chemical modification of Asian Dust particles during long-range transport by the combined use of quantitative ED-EPMA and ATR-FT-IR imaging vol.12, pp.10, 2010, https://doi.org/10.5194/acpd-12-27297-2012
  9. Physicochemical Properties of Indoor Particulate Matter Collected on Subway Platforms in Japan vol.6, pp.2, 2012, https://doi.org/10.5572/ajae.2012.6.2.073