SOME APPLICATIONS OF q-DIFFERENTIAL OPERATOR

JIAN-PING FANG

Abstract. In this paper, we use q-differential operator to recover the finite Heine $_2\Phi_1$ transformations given in [3]. Applying that, we also obtain some terminating q-series transformation formulas.

1. Introduction

Recently, G. E. Andrews [3] derived several finite Heine $_2\Phi_1$ transformations from the terminating Sears $_3\Phi_2$ transformation. Then he used them to give two finite Rogers-Ramanujan type identities. In this paper, by using the properties of q-differential operators, we also obtain the finite Heine $_2\Phi_1$ transformation and the following finite q-series transformations

\begin{equation}
\sum_{j=0}^{M} \frac{1}{\binom{M}{j}} (-1)^j q^{(j)^2+2j} \frac{1}{1-a_1q^j} = \frac{(q;q)_M}{(a_1;q)_{M+1}} \sum_{j=0}^{M} (a_1;q)_j q^j, \tag{1}
\end{equation}

\begin{equation}
\sum_{k=0}^{M} \frac{(-1)^k k^2 (-q^2;q^2)_k}{(q^4;q^4)_k (q^2;q^2)_{M-k}} = \frac{(q^2;q^2)_M}{(q^4;q^4)_M}, \tag{2}
\end{equation}

\begin{equation}
\sum_{k=0}^{M} \frac{q^{k^2-sk} (-q^s;q^2)_k}{(q;q)_{2k} (q^2;q^2)_{M-k}} = \frac{(-q^{1-s};q^2)_M}{(q;q)_{2M}}, \quad s = 0, 1, \tag{3}
\end{equation}

Received March 29, 2008; Revised December 5, 2008.

2000 Mathematics Subject Classification. 05A30, 33D15, 33D60, 33D05.

Key words and phrases. q-series, q-differential operator, Rogers-Ramanujan type identity.

The work supported by Innovation Program of Shanghai Municipal Education Commission (No. 08ZZ2415) and Talent Cultivation Program of Huaiyin Normal University (No. 08QNZCK001).

The work also supported by Universities Natural Science Foundation of Jangsu (No. 09KJB110002) and National Natural Science Foundation of China (No. 10971078).

©2010 The Korean Mathematical Society
\[
\sum_{k=0}^{M} q^{3k^2 - sk} = \frac{1}{(-q^2-s;q^2)_M} \sum_{k=0}^{M} q^{k^2 + (1-s)k} (q^2;q^2)_M^{-k}, \quad s = 0, 1,
\]

where
\[
(a;q)_0 = 1, \quad (a;q)_n = \prod_{k=0}^{n-1} (1 - aq^k), \quad n = 1, 2, \ldots
\]

and
\[
(a;q)_\infty = \prod_{k=0}^{\infty} (1 - aq^k).
\]

As \(M \to \infty \), the second identity reduces to the identity appearing in [14, p. 152, Eq. (4)] (or [13, p. 99, Eq. (A.4)]). If \(s = 0, M \to \infty \), the third tends to the identity appearing in Slater’s paper [14, p. 156, Eq. (47)] (or [4, p. 252, Eq. (11.2.1)], [13, p. 104, Eq. (A.47)]).

Throughout the paper, we take \(0 < |q| < 1 \). And we also use the following notations
\[
(a_1, a_2, \ldots, a_m; q)_n = (a_1; q)_n (a_2; q)_n \cdots (a_m; q)_n,
\]
\[
(r \Phi_s (a_1, \ldots, a_r; b_1, \ldots, b_s; q, x)) = \sum_{n=0}^{\infty} \frac{[a_1, a_2, \ldots, a_r; q]}{[b_1, b_2, \ldots, b_s; q]} \frac{(-1)^n q^{n(n-1)/2}}{x^n},
\]
and
\[
\binom{n}{k} = \frac{(q; q)_n}{(q; q)_k (q; q)_{n-k}}.
\]

2. Some lemmas

Recall that the \(q \)-differential operator \(D_q \) and \(q \)-shifted operator \(\eta \) (cf. [6, 7, 10-12]), acting on the variable \(x \), are defined by:
\[
D_q \{ f(x) \} = \frac{f(x) - f(xq)}{x} \quad \text{and} \quad \eta \{ f(x) \} = f(xq).
\]

We can prove, by means of induction, the explicit formulae (cf. [10, 11])
\[
D_q^n \left\{ \frac{(x\omega; q)_\infty}{(xs; q)_\infty} \right\} = s^n \frac{(\omega/ s; q)_n (x\omega q^n; q)_\infty}{(xs; q)_\infty},
\]
Some Applications of q-Differential Operator

(6) \[D^n_q \{ f(x) \} = x^{-n} \sum_{k=0}^{n} q^k \frac{(q^{-n}; q)_k}{(q; q)_k} f(q^k x) \]

and the q-Leibniz rule for the product of two functions

(7) \[D^n_q \{ f(x)g(x) \} = \sum_{k=0}^{n} \binom{n}{k} q^{(k-n)} D^k_q \{ f(x) \} D^{n-k}_q \{ g(x^k) \}. \]

In [6, 7], we have constructed the following q-exponential operator

(8) \[_1 \Phi_0 \left(\frac{b}{c}; q, cD_q \right) = \sum_{n=0}^{\infty} \frac{(b; q)_n (cD_q)^n}{(q; q)_n}, \]

and gave some applications of it. In this paper, we will use the case of $b = q^{-M}$,

(9) \[_1 \Phi_0 \left(\frac{q^{-M}}{c}; q, cD_q \right) = \sum_{n=0}^{M} \frac{(q^{-M}; q)_n (cD_q)^n}{(q; q)_n} \]

and the following more general finite q-exponential operator

(10) \[_2 \Phi_1 \left(q^{-M}; a_1/ b_1, q; q, cD_q \right) = \sum_{n=0}^{M} \frac{(q^{-M}; q)_n (cD_q)^n}{(q; q)_n} \]

where M is a non-negative integer.

Letting \[F(x) = \left[xc_1, \; xc_2, \ldots, \; xc_r ; q \right]_\infty, \]
from (6), we have:

Lemma 2.1. For complex numbers $x, a_i, b_i, i = 1, 2, \ldots, r,$

(11) \[D^n_q \{ F(x) \} = x^{-n} F(x) \sum_{k=0}^{n} \frac{q^{-n}, \; xd_1, \; xd_2, \ldots, \; xd_r ; q}{q, \; xc_1, \; xc_2, \ldots, \; xc_r ; q} \]

From (7) and (9), we obtain the next lemma.

Lemma 2.2. We have

(12) \[_1 \Phi_0 \left(\frac{q^{-M}}{c} ; q, cD_q \right) \left\{ \frac{(c_1 x_1 ; q)_\infty}{(d_1 x_1, d_2 x_2)_\infty} \right\} = (cd_2 q^{-M} ; q)_M \left(c_1 x_1 ; q \right)_\infty _3 \Phi_2 \left(q^{-M}, \; c_1 / d_1, \; x_2 ; q, cd_1 \right). \]

The identity above is a special case of an identity in [6, p. 21, Eq. (7)].
Lemma 2.3. If \(c = q/d_2 \), then
\[
(13)
\]
\[
2\Phi_1 \left(q^{-M}, \frac{a_1}{b_1}; q, cD_q \right) \left\{ (c_1x; q)_\infty \right\}
\]
\[
= a_M \left(\frac{b_1/a_1;q)_M}{(b_1;q)_M} \frac{(c_1x; q)_\infty}{(d_1x, d_2x)_\infty} \Phi_2 \left(q^{-M}, a_1, d_2x, \frac{c_1/d_1}{c_1x}, q^{-1}a_1/b_1; q, qd_1/b_1d_2 \right). \]
\]
Proof. From (7), we have
\[
(14)
\]
\[
2\Phi_1 \left(q^{-M}, \frac{a_1}{b_1}; q, cD_q \right) \left\{ (c_1x; q)_\infty \right\}
\]
\[
= \sum_{k=0}^{M} \left[q^{-M}, \frac{a_1}{b_1}; q, cD_q, k \right] \left\{ (c_1x; q)_\infty \right\}
\]
\[
\times \sum_{j=0}^{M-k} \left[q^{-M-k}, \frac{a_1q^k}{b_1q^k}; q, c, j \right] \left\{ (c_1x; q)_\infty \right\}
\]
\[
= a_M \left(\frac{b_1/a_1;q)_M}{(b_1;q)_M} \frac{(c_1x; q)_\infty}{(d_1x, d_2x)_\infty} \Phi_2 \left(q^{-M}, a_1, d_2x, \frac{c_1/d_1}{c_1x}, q^{-1}a_1/b_1; q, qd_1/b_1d_2 \right). \]
\]
This completes the proof. \(\square \)

3. Main results and special cases

Theorem 3.1 (cf. [8], p. 11). The \textit{q-Chu-Vandermonde summation}
\[
(15)
\]
\[
2\Phi_1 \left(q^{-n}, \frac{a_1}{d_1}; q, q \right) = a^n / (d_1q)_n\]
\]
Proof. Setting \(F(x) = (xc_1; q)_\infty / (xd_1; q)_\infty \) in (11), and then putting \(xc_1 = d, xd_1 = a \), we complete the proof. \(\square \)

Theorem 3.2 (cf. [8, p. 16, Eq. (1.9.11)]). Suppose \(n > m_1 + \cdots + m_r \). Then we have
\[
(16)
\]
\[
\Phi_r \left(q^{-n}, xc_1q^{m_1}, \ldots, xc_rq^{m_r}; q, q \right) = 0.\]
\]
Proof. Setting \(d_i = c_iq^{m_i}, m_i = 0, 1, \ldots, \infty, i = 1, 2, \ldots, r \), in (11), we complete the proof. \(\square \)

Theorem 3.3. We have
\[
(17)
\]
\[
\sum_{m=0}^{n} \sum_{j=0}^{M} \left(q^{-n}, a_1q^m; (q, d_1; q)_m \right) \left(q^{-M}, a_1q^m; q, b_1q^j \right) q^{m+j} = a_M \left(\frac{b_1/a_1;q)_M}{(b_1; q)_M} \frac{a^n(d/a; q)_n}{(d; q)_n} \Phi_2 \left(q^{-M}, a_1, a_1, q^{-1}a_1/b_1; q, q^2/db_1 \right). \]
Proof. We rewrite (14) as follows
\begin{equation}
\sum_{m=0}^{n} \frac{(q^{-n}; q)_m}{(q, d; q)_m} q^m \frac{1}{(aq^m; q)_\infty} = \frac{(-1)^n q^{-\frac{1}{2}}}{(d, q)_n} \frac{(a q^{1-n}/d; q)_\infty}{(aq/d, a; q)_\infty}.
\end{equation}

Applying the operator $2\Phi_1 \left(\genfrac{}{}{0pt}{}{q^{-M}, a_1}{b_1}; q, b \right)$ to both sides of (17) with respect to the variable a, from (13), we complete the proof.

Corollary 3.1. We have
\begin{equation}
\sum_{m=0}^{n} \sum_{j=0}^{M} \frac{(q^{-n}; q)_m (q^{-M}; q)_j}{(q, q)_m (q; q)_j} q^{m+j} (1 - a q^m) (1 - a q^j)
= \frac{(q; q)_M}{(a; q)_M + 1} \frac{(q; q)_n}{(q, q)_n} \sum_{k=0}^{\min(M, n)} \left(\frac{a, a_1; q}{q, q} \right)_k (-1)^k q^{-\frac{k}{2}} a_1^{M-k} a^n - k.
\end{equation}

Proof. If set $b_1 = qa_1$ and $d = qa$ in (16), we complete the proof.

Theorem 3.4. We have
\begin{equation}
\sum_{m=0}^{n} \sum_{j=0}^{M} \frac{(q^{-n}; q)_m (q^{-M}; q)_j}{(q, d; q)_m (q, b_1; q)_j} d^j q^{m+j} = \frac{a_1^M b_1 (b_1/a_1; q)_M}{(b_1; q)_M} a^n \frac{(d/a_1; q)_n}{(d; q)_n} q^{-1-n} \Phi_2 \left(\genfrac{}{}{0pt}{}{q^{-1-n}/d}{d/a_1}; q, d/b_1 \right).
\end{equation}

Proof. We rewrite (17) as follows
\begin{equation}
\sum_{m=0}^{n} \frac{(q^{-n}; q)_m}{(q, d; q)_m} q^m \frac{1}{(aq^m; q)_\infty} = \frac{(-1)^n q^{-\frac{1}{2}}}{(d, q)_n} \frac{(a q^{-1-n}/d; q)_\infty}{(a q/d, a; q)_\infty}.
\end{equation}

Applying the operator $2\Phi_1 \left(\genfrac{}{}{0pt}{}{q^{-M}, a_1}{b_1}; q, d \right)$ to both sides of (20) with respect to the variable a, using (13), we complete the proof.

Corollary 3.2 (cf. [8, p. 23]). Jackson’s transformation formula
\begin{equation}
\sum_{j=0}^{M} \frac{(q^{-M}, a_1; q)_j}{(q, b_1; q)_j} d^j = \frac{a_1^M b_1 (b_1/a_1; q)_M}{(b_1; q)_M} q^{-M} \frac{q/d}{q^{-M} a_1/b_1} \Phi_1 \left(\genfrac{}{}{0pt}{}{q^{-M}, a_1}{b_1}; q, d/b_1 \right).
\end{equation}

Proof. If set $a \rightarrow 1$ in (19), we complete the proof.

Corollary 3.3. We have
\begin{equation}
\sum_{j=0}^{M} \left[\frac{M}{j} \right] \frac{(-1)^j q^{-\frac{j+1}{2}}}{(a_1; q)_j} \frac{(b_1/a_1; q)_M}{(b_1; q)_M} d^j \frac{b_1}{a_1} = \frac{b_1 (b_1/a_1; q)_M}{(b_1; q)_M} \sum_{j=0}^{M} \frac{(q, a_1; q^{-1-M}/b_1; q)_j}{(q, a_1; q^{-1-M}/b_1; q)_j}.
\end{equation}
Proof. If set \(q \to 1/q \) in (21), then replacing \(a_1 \) by \(1/a_1 \), \(b_1 \) by \(1/b_1 \), we complete the proof. \(\square \)

Setting \(d = 1, b_1 = qa_1 \), (22) tends to:

Corollary 3.4. We have

\[
\sum_{j=0}^{M} \left[\frac{M}{j} \right] (-1)^j q^{(j+2)/2} \frac{1}{1-a_1q^j} = \frac{(q;q)_M}{(a_1;q)_{M+1}} \sum_{j=0}^{M} (a_1;q) j q^j.
\]

Theorem 3.5. We have

\[
3 \Phi_2 \left(q^{-M}, \frac{c_1/d_2}{cd_1q^{-M}}, \frac{xd_1}{xc_1}; q, cd_2 \right)
\]

\[
= \frac{(q/cd_2;q)_M}{(q/cd_1;q)_M} \frac{d_2}{d_1}^{M} 3 \Phi_2 \left(q^{-M}, \frac{c_1/d_1}{d_2q^{-M}}, \frac{xd_2}{xc_1}; q, cd_1 \right).
\]

Proof. For

\[
1 \Phi_0 \left(q^{-M} : q, cD_q \right) \left\{ (c_1x;q)_\infty \right\} = 1 \Phi_0 \left(q^{-M} : q, cD_q \right) \left\{ (c_1x;q)_\infty \right\},
\]

and applying (12), we complete the proof. \(\square \)

In the identity (24), taking \(q \to 1/q \), then replacing \((x, c, c_1, d_i)\) by \((1/x, c/q, 1/c_1, 1/d_i)\) respectively, where \(i = 1, 2 \), we obtain the following identity:

Theorem 3.6. We have

\[
3 \Phi_2 \left(q^{-M}, \frac{c_1/d_2}{cd_1q^{-M}}, \frac{xd_1}{xc_1}; q, q \right)
\]

\[
= \frac{(cd/ab;q)_M}{(cd/ab;q)_M} \frac{d}{d_1}^{M} 3 \Phi_2 \left(q^{-M}, \frac{c_1/d_1}{d_2q^{-M}}, \frac{xd_2}{xc_1}; q, d_2q \right).
\]

Remark. An equivalent identity can be found in Andrews’ paper [3, Corollary 4].

Theorem 3.7. We have

\[
3 \Phi_2 \left(q^{-M}, \frac{a}{c}, \frac{b}{d}, \frac{cdq^M/ab}{c}, \frac{x}{z}; q, z \right)
\]

\[
= \frac{(cd/ab;q)_M}{(d_1/q)_M} \frac{d}{d_1}^{M} 3 \Phi_2 \left(q^{-M}, \frac{a}{c}, \frac{b}{d}, \frac{cd/ab}{c}, \frac{dx}{z}; q, dq^{ab} \right).
\]

Proof. In (24), letting \(c \to cq^M \), then replacing \(xc_1 \) by \(c \), \(cd_1 \) by \(d \), \(c_1/d_2 \) by \(a \), last step setting \(cd_1/ad_2 = b \), we complete the proof. \(\square \)

Remark. (26) follows from setting \(a = q^{-M} \) in the Sears \(\Phi_2 \) transformation [8, p. 62, Eq. (3.2.7)].

Corollary 3.5 (cf. [8, p. 10, Eq. (1.4.6)]). Heine’s \(2 \Phi_1 \) transformation formula

\[
2 \Phi_1 \left(\frac{a}{c}, \frac{b}{d}; q, z \right) = \frac{(abz/c;q)_\infty}{(z;q)_\infty} 2 \Phi_1 \left(\frac{a}{c}, \frac{b}{d}; q, abz/c \right).
\]
Proof. In (25), letting $M \to \infty$, then replacing c/d_1 by z, xc_1 by c, c_1/d_1 by a, last step setting $a_1c/ad_2 = b$, we complete the proof.

Corollary 3.6. We have

$$2\Phi_2\left(a, \frac{b}{c}, \frac{c}{d}; q, cd/ab\right) = \frac{(cd/ab; q)_\infty}{(d; q)_\infty} 2\Phi_2\left(c/a, \frac{c/b}{cd/ab}; q, d\right).$$

Proof. In (25), putting $M \to \infty$, we complete the proof.

4. Some other special cases

Theorem 4.1. We have

$$\sum_{k=0}^{M} \frac{(c_1/d_2; q)_k q^k}{(q, xc_1; q)_k} = \sum_{k=0}^{M} \frac{(-1)^k q^{(k+1)}(xd_2; q)_k}{(q, xc_1; q)_k (q; q)_M-k} \left(\frac{c_1}{d_2}\right)^k.$$

Proof. In (25), putting $c = d_1q$, then letting $d_1 \to 0$, we complete the proof.

Theorem 4.2. We have

$$\sum_{k=0}^{M} \frac{(c_1/d_2; q)_k (-xd_2)_k q^{(k+1)}q}{(q, xc_1; q)_k} = \sum_{k=0}^{M} \frac{(-1)^k q^{(k+1)}(xd_2; q)_M-k}{(q; q)_k (q, xc_1; q)_M-k}.$$

Proof. In (28), taking $q \to 1/q$, then replacing (x, c_1, d_2) by $(1/x, 1/c_1, 1/d_2)$ respectively, we complete the proof.

Corollary 4.1. We have

$$\sum_{k=0}^{M} \frac{q^k}{(xd_2; q)_k+1} = \sum_{k=0}^{M} \frac{(-1)^k q^k q^{2k}}{(1-xd_2q^k)(q; q)_k (q; q)_M-k}.$$

Proof. In (28), putting $c_1 = d_2q$, we complete the proof.

Corollary 4.2. We have

$$\sum_{k=0}^{M} \frac{q^k}{(q, xc_1; q)_k} = \sum_{k=0}^{M} \frac{q^{k^2} (xc_1)_k}{(q, xc_1; q)_k (q; q)_M-k}.$$

Proof. In (28), letting $d_2 \to \infty$, we complete the proof.

Corollary 4.3. We have

$$\sum_{k=0}^{M} \frac{q^k}{(q; q)_k^2} = \sum_{k=0}^{M} \frac{q^{k^2+k}}{(q; q)_k (q; q)_M-k}.$$

Proof. In (31), putting $xc_1 = q$, we complete the proof.

Corollary 4.4. We have

$$\sum_{k=0}^{M} \frac{q^{k^2-k} (xc_1)_k}{(q, xc_1; q)_k} = \sum_{k=0}^{M} \frac{(-1)^k q^{(k+1)}q}{(q; q)_k (q, xc_1; q)_M-k}.$$
Proof. In (29), setting \(d_2 = 0 \), we complete the proof. \(\square \)

Corollary 4.5. We have

\[
\sum_{k=0}^{M} \frac{q^{(k+1)/2}(-1)^{k/2}}{(q; q^2)_k} = \sum_{k=0}^{M} \frac{(-1)^{k/2}q^{(k+1)/2}(-q; q)_{M-k}}{(q; q)_{k}(q; q^2)_{M-k}}.
\]

Proof. In (29), taking \(xc_1 = q, c_1 = -d_2 \), we complete the proof. \(\square \)

Theorem 4.3. We have

\[
\sum_{k=0}^{M} (-1)^k q^{k^2-k}(a, b; q^2)_k \frac{(cd/ab)}{k} = \frac{(cd/ab)_M}{(d; q^2)_M} \sum_{k=0}^{M} d^k(-1)^k q^{k^2-k}(c/a, c/b; q^2)_k.
\]

Proof. In (26), letting \(q \to q^2 \), we complete the proof. \(\square \)

Corollary 4.6. We have

\[
\sum_{k=0}^{M} (-1)^k q^{k^2} (-q; q^2)_k = \frac{(q^2)_M}{(q^2)_M}.
\]

Proof. In (35), letting \(c = b, d = -q^2, a = -q \), we complete the proof. \(\square \)

Corollary 4.7. We have

\[
\sum_{k=0}^{M} q^{k^2-sk} (-q; q^2)_k = \frac{(-q^{1-s}; q^2)_M}{(q; q)_{2M}}
\]

where \(s = 0, 1 \).

Proof. In (35), letting \(c = b, d = q, a = -q, -1 \), we complete the proof. \(\square \)

Corollary 4.8. We have

\[
\sum_{k=0}^{M} q^{k^2+(2-s)k} (-q^s; q^2)_k = \frac{(-q^{3-s}; q^2)_M}{(q; q)_{2M+1}}
\]

where \(s = 0, 1, 2 \).

Proof. In (35), letting \(c = b, d = q^3, a = -q^2, -q, -1 \), we complete the proof. \(\square \)

Corollary 4.9. We have

\[
\sum_{k=0}^{M} \frac{q^{k^2-sk}}{(q^2; q)_{2k}(q^2; q^2)_{M-k}} = \frac{1}{(-q^{2-s}; q^2)_M} \sum_{k=0}^{M} \frac{q^{k^2+(1-s)k}}{(q; q)_{2k}(q^2; q^2)_{M-k}}.
\]
where \(s = 0, 1 \).

Proof. In (35), letting \(c = q, d = -q^2, -q, a, b \to \infty \), we complete the proof. □

Corollary 4.10. We have

\[
\sum_{k=0}^{M} \frac{q^{3k^2 + sk}}{(q; q)_{2k+1}} = \frac{1}{(-q^4; q^2)_M} \sum_{k=0}^{M} \frac{q^{k^2+(s-1)k}}{(q; q)_{2k+1}}.
\]

where \(s = 0, 1, 2, 3 \).

Proof. In (35), letting \(c = q^3, d = -q^3, -q, -1, a, b \to \infty \), we complete the proof. □

Corollary 4.11. We have

\[
\sum_{k=0}^{M} \frac{q^{2k^2} (q; q^2)^k}{(-q^4; q^2)_k(q^4; q^4)_k(q^2; q^2)_M} = \frac{1}{(-q^4; q^2)_M} \sum_{k=0}^{M} \frac{q^{k^2} (-q; q^2)_k}{(q^4; q^4)_k(q^2; q^2)_M},
\]

where \(s = 0, 1, 2, 3 \).

Proof. In (35), letting \(c = q^2, d = -q^2, a = q, b \to \infty \), we complete the proof. □

Letting \(M \to \infty \), if \(x_{c1} = q \), (33) tends to (cf. [1, p. 33, Eq. (1.1)] or [3, p. 1, Eq. (1.2)])

\[
\sum_{k=0}^{\infty} \frac{q^{k^2}}{(q; q)_k^2} = \frac{1}{(q; q)}.
\]

Equation (34) reduces to

\[
\sum_{k=0}^{\infty} \frac{q^{k^2}}{(q; q)_k^2} = \frac{(-q; q)_\infty}{(q; q)_\infty}.
\]

Equation (39) turns to

\[
\sum_{k=0}^{\infty} \frac{q^{3k^2 - sk}}{(q^2; q^2)_k(q^4; q^4)_k} = \frac{1}{(-q^2; q^2)_\infty} \sum_{k=0}^{\infty} \frac{q^{k^2 + (1-s)k}}{(q; q)_{2k}},
\]

where \(s = 0, 1 \).

Equation (40) tends to

\[
\sum_{k=0}^{\infty} \frac{q^{3k^2 + sk}}{(q; q)_{2k+1}(-q^4; q^2)_k} = \frac{1}{(-q^4; q^2)_\infty} \sum_{k=0}^{\infty} \frac{q^{k^2 + (s-1)k}}{(q; q)_{2k+1}},
\]

where \(s = 0, 1, 2, 3 \).

Applying these relations above, then using the identities

\[
\sum_{k=0}^{\infty} \frac{q^{k^2}}{(q; q)_{2k}} = \frac{(q^2; q^2; q^{10}; q^{10})_\infty}{(q; q)_\infty} \cdot \frac{(q^4; q^{14}; q^{20})_\infty}{(q; q)_\infty},
\]
We have improvement of an earlier version of this paper. In [2, 3, 4, 9, 15], the authors used Eq. (19), [14, p. 156, Eq. (46)], [4, p. 252, Eq. (11.2.7)] and [14, p. 156, Eq. (44)], respectively. In Slater’s paper [14, p. 162, Eq. (98), (94), (99), (96), respectively] (or cf. [4, p. 252, Eq. (11.2.1)–Eq. (11.2.4)]), we have shown in Slater’s paper [14, p. 154, (98), (94), (99), (96), respectively] (or cf. [4, p. 252, Eq. (11.2.1)–Eq. (11.2.4)]), we have

\[\sum_{k=0}^{\infty} \frac{q^{k^2+k}}{(q; q)_{2k+1}} = \frac{(q^3, q^7, q^{10}; q^{10})_\infty (q^4, q^{16}; q^{20})_\infty}{(q; q)^\infty},\]

\[\sum_{k=0}^{\infty} q^{k^2+k} \frac{q}{(q; q)_{2k}} = \frac{(q, q^9, q^{10}; q^{10})_\infty (q^8, q^{12}; q^{20})_\infty}{(q; q)^\infty},\]

\[\sum_{k=0}^{\infty} q^{k^2+2k} \frac{q}{(q; q)_{2k+1}} = \frac{(q^4, q^6, q^{10}; q^{10})_\infty (q^7, q^{18}; q^{20})_\infty}{(q; q)^\infty},\]

shown in Slater’s paper [14, p. 162, Eq. (98), (94), (99), (96), respectively] (or cf. [4, p. 252, Eq. (11.2.1)–Eq. (11.2.4)]), we have

\[\sum_{k=0}^{\infty} q^{3k^2} \frac{q}{(q; q^2)_k(q^4; q^4)_k} = \frac{(q, q^9, q^{10}; q^{10})_\infty (q^8, q^{12}; q^{20})_\infty}{(q; q)^\infty (-q^2; q^2)^\infty},\]

\[\sum_{k=0}^{\infty} q^{3k^2-k} \frac{q}{(q^2; q^2)_k(q^2; q^4)_k} = \frac{(q^2, q^8, q^{10}; q^{10})_\infty (q^6, q^{14}; q^{20})_\infty}{(q; q)^\infty (-q^2; q^2)^\infty},\]

\[\sum_{k=0}^{\infty} \frac{q^{3k^2+2k}}{(q^2; q^2)_{k+1}(q^4; q^4)_k} = \frac{(q^3, q^7, q^{10}; q^{10})_\infty (q^4, q^{16}; q^{20})_\infty}{(q; q)^\infty (-q^2; q^2)^\infty},\]

\[\sum_{k=0}^{\infty} q^{3k^2+2k} \frac{q}{(q; q)_{2k+1}(-q; q^2)_{k+1}} = \frac{(q^4, q^6, q^{10}; q^{10})_\infty (q^7, q^{18}; q^{20})_\infty}{(q; q)^\infty (-q^2; q^2)^\infty}.\]

Equations (49), (50), (51) and (52) are equivalent to the identities [14, p. 154, Eq. (19)], [14, p. 156, Eq. (46)], [4, p. 252, Eq. (11.2.7)] and [14, p. 156, Eq. (44)] respectively. In [2, 3, 4, 9, 15], the authors used q-series transformations to obtain many Rogers-Ramanujan type identities. Here, we will present a new identity by using this method. From the identity in Slater’s list [14, p. 154, Eq. (44)], combined with (41), we get the new identity.

Corollary 4.12. We have

\[\sum_{k=0}^{\infty} q^{2k^2} \frac{(q; q^2)_k}{(-q; q^2)_k(q^4; q^4)_k} = \frac{(q^3, q^5, q^7; q^6)_\infty}{(q^2; q^2)^\infty}.\]

Acknowledgements. We would like to thank the referees for providing a detailed report offering many helpful criticisms and suggestions leading to an improvement of an earlier version of this paper.
References

School of Mathematical Sciences
Huaiyin Normal University
Huaian, Jiangsu 223300, P. R. China
E-mail address: fjp74028163.com