DOI QR코드

DOI QR Code

Optimization of Water Reuse System under Uncertainty

불확실성을 고려한 하수처리수 재이용 관로의 최적화

  • Chung, Gun-Hui (Research Center for Disaster Prevention Science and Technology, Korea University) ;
  • Kim, Tae-Woong (Department of Civil and Environmental Engineering, Hanyang University) ;
  • Lee, Jeong-Ho (Department of Civil Engineering, Hanyang University) ;
  • Kim, Joong-Hoon (School of Civil, Environmental and Architectural Engineering, Korea University)
  • 정건희 (고려대학교 방재과학기술연구센터) ;
  • 김태웅 (한양대학교 건설환경시스템공학) ;
  • 이정호 (한양대학교 대학원 토목공학과) ;
  • 김중훈 (고려대학교 건축.사회환경공학부)
  • Published : 2010.02.28

Abstract

Due to the increased water demand and severe drought as an effect of the global warming, the effluent from wastewater treatment plants becomes considered as an alternative water source to supply agricultural, industrial, and public (gardening) water demand. The effluent from the wastewater treatment plant is a sustainable water source because of its good quality and stable amount of water discharge. In this study, the water reuse system was developed to minimize total construction cost to cope with the uncertain water demand in future using two-stage stochastic linear programming with binary variables. The pipes in the water reuse network were constructed in two stages of which in the first stage, the water demands of users are assumed to be known, while the water demands in the second stage have uncertainty in the predicted value. However, the water reuse system has to be designed now when the future water demands are not known precisely. Therefore, the construction of a pipe parallel with the existing one was allowed to meet the increased water demands in the second stage. As a result, the trade-off of construction costs between a pipe with large diameter and two pipes having small diameters was evaluated and the optimal solution was found. Three scenarios for the future water demand were selected and a hypothetical water reuse network considering the uncertainties was optimized. The results provide the information about the economies of scale in the water reuse network and the long range water supply plan.

다양화되는 물 수요와 기상 이변 등의 영향으로 극심해지는 가뭄에 대비하여 대체 수자원의 확보는 수자원 연구의 매우 중요한 부분이 되었다. 다양한 대체 수자원 중 하수처리장의 방류수는 양호한 수질과 비교적 예측이 가능한 방류량으로 인해 농업용수나 공업용수 혹은 공공용수를 대체할 안정적인 수원으로 관심의 대상이 되고 있다. 본 연구에서는 하수처리수 재이용을 위해 미래의 불확실한 용수 수요량을 고려한 최소의 공사비를 최적화하는 방법을 이진변수를 가지는 2단계 추계학적 선형계획법을 이용하여 제시하였다. 현재 설계하는 하수처리수 재이용 모형은 미래의 용수 수요량까지 고려하여 설계하여야 한다는 점을 고려하여, 미래에 용수수요가 증가할 경우, 기존의 관에 평행한 다른 관을 추가로 건설할 수 있다고 가정하여 2단계에 걸쳐 공사가 가능한 모형을 구축하였다. 그 결과 미래의 물 사용량까지를 모두 고려하여 현재 큰 직경의 관로를 건설하는 경우와 작은 직경의 관로를 두 번에 걸쳐 건설하는 대안 사이의 비용차이를 고려한 모형이 제안되었으며, 가상의 네트워크에 적용되어 그 적용성을 입증하였다. 제안된 모형은 하수 처리수 재이용 네트워크 계획 시 경제적인 관로 설계를 위한 기본 자료로 활용될 수 있으며, 장기적인 물 공급 계획을 수립할 시 여러 가지 설계 대안들에 대한 비교를 위해도 사용이 가능하다.

Keywords

References

  1. 정건희, 김중훈, 김태웅 (2009). “혼합정수 계획법을 이용한 처리수 재이용 모형의 개발.” 2009년 한국수자원학회 학술발표회 논문집, 한국수자원학회, pp.292-296.
  2. Alperovits, E., and Shamir, U. (1977). “Design of optimal water distribution systems.” Water Resources Research, Vol. 13, No. 6, pp. 885-900. https://doi.org/10.1029/WR013i006p00885
  3. Bhave, P., and Sonak, V. (1992). “A critical study of the linear programming gradient method for optimal design of water supply networks.” Water Resources Research, Vol. 28, No. 6, pp. 1577-1584. https://doi.org/10.1029/92WR00555
  4. Boulos, P., Lansey, K., and Karney, B. (2006). Comprehensive Water Distribution Systems Analysis Handbook for Engineers and Planners. MWHsoft.
  5. Eusuff, M.M., and Lansey, K.E. (2003). “Optimization of water distribution network design using the shuffled frog leaping algorithm.” Journal of Water Resources Planning and Management, ASCE, Vol 129, No. 3, pp. 210–225. https://doi.org/10.1061/(ASCE)0733-9496(2003)129:3(210)
  6. Gupta, I. (1969). “Linear programming analysis of a water supply system.” Transactions of American Institute of Industrial Engineering, Vol. 1, No. 1, pp. 56-61. https://doi.org/10.1080/05695556908974414
  7. Gupta, I., and Hassan, M.Z. (1972). “Linear programming analysis of a water supply system with multiple supply points.” Transactions of American Institute of Industrial Engineering, Vol. 4, No. 3, pp. 200-204. https://doi.org/10.1080/05695557208974850
  8. Quindry, G.E., Brill, E.D., and Liebman, J.C. (1981). “Optimization of looped water distribution systems.” Journal of Environmental Engineering, ASCE, Vol. 107, No. 4, pp. 665-679.
  9. Samani, H.M. and Mottaghi, A. (2006). “Optimization of water distribution networks using integer linear programming.” Journal of Hydraulic Engineering, ASCE Vol. 132, No.5, pp. 501-509. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:5(501)
  10. Savic, D.A., and Walters, G.A. (1997). “Genetic algorithms for least-cost design of water distribution networks.” Journal of Water Resources Planning and Management, ASCE, Vol. 123, No. 2, pp. 67-77. https://doi.org/10.1061/(ASCE)0733-9496(1997)123:2(67)
  11. Simpson, A., Dandy, G., and Murphy, L. (1994). “Genetic algorithms compared to other techniques for pipe optimization.” Journal of Water Resources Planning and Management, ASCE, Vol. 120, No. 4, pp. 423-443. https://doi.org/10.1061/(ASCE)0733-9496(1994)120:4(423)

Cited by

  1. A Study on the Comparison of Corrosion in Water Supply Pipes Due to Tap Water (TW) and Reclaimed Water (RW) vol.10, pp.4, 2018, https://doi.org/10.3390/w10040496