Estimation of Muskingum-Cunge Parameters for Natural Streams

자연하천에 대한 Muskingum-Cunge 모형의 매개변수 산정

  • Kim, Jin-Soo (Dept. of Civil and Envir. Engrg., Sungkyunkwan Univ.) ;
  • Jun, Kyung-Soo (Dept. of Civil and Envir. Engrg., Sungkyunkwan Univ.)
  • 김진수 (성균관대학교 공과대학 건설환경시스템공학과 대학원) ;
  • 전경수 (성균관대학교 공과대학 사회환경시스템공학과)
  • Published : 2010.02.28


A method is proposed of estimating Muskingum-Cunge parameters for natural streams using cross-sectional and longitudinal channel geometry and roughness coefficient data. Firstly, for various water-surface levels at a cross section cross-sectional areas and hydraulic radii are calculated. Corresponding discharges are then calculated using Manning's equation. This procedure is repeated for all cross-sections in the reach. Finally, routing parameters are estimated from the calculated cross-sectional area and discharge value pairs by regression analysis. The procedures for estimating Muskingum-Cunge parameters are applied to the South Han River. Flows calculated by Muskingum-Cunge model with estimated parameters showed much better agreement with those by dynamic wave model in peak discharge, time to peak discharge, and normalized RMS errors than those calculated by the HEC-1 Muskingum-Cunge model.

하도의 횡단 및 종단 지형자료와 조도계수를 이용하여 자연하천에 대한 Muskingum-Cunge 모형의 매개변수들을 추정하는 방법을 제안하였다. 우선 각 단면에서의 다양한 수위에 대하여 통수단면 및 동수반경을 계산한 후, Manning 공식을 이용하여 유량을 산정한다. 이러한 과정은 하도에서의 모든 단면에 대하여 반복되며, 최종적으로 통수단면과 유량을 통한 회귀 분석에 의하여 매개변수들을 추정한다. 이와 같은 Muskingum-Cunge 모형의 매개변수 추정과정을 남한강 구간에 적용하였다. 추정된 매개변수들을 사용한 Muskingum-Cunge 모형의 계산결과는 무차원 RMS 오차, 첨두유량의 크기 및 발생시각 등 모든 면에서 HEC-1의 Muskingum-Cunge 모형에 비하여 동역학적 모형의 계산결과와 잘 일치하는 것으로 나타났다.



  1. 건설교통부 (2004). 남한강 하천정비기본계획 및 하천대장, 서울지방국토관리청
  2. 김대근, 서일원 (2003). “Muskingum-Cunge 홍수추적방법의 오차해석.” 한국수자원학회논문집, 한국수자원학회, 제36권, 제5호, pp. 751-760.
  3. 김진수 (1995). “수리학적 유출모형에 의한 홍수추적 : 선형 Muskingum-Cunge법을 이용한 단위유역의 추적.” 한국농공학회지, 한국농공학회, 제37권, 제6호, pp. 59-69.
  4. 김진수 (1996). “선형 Muskingum-Cunge법에서의 수치적 인자의 변화가 유출측성에 미치는 영향.” 한국수자원학회지, 한국수자원학회, 제29권, 제5호, pp. 139-150.
  5. 김진수, 김진홍 (1999). “선형과 비선형 Muskingum-Cunge법에 의한 유출곡선의 특성 비교.” 한국수자원학회논문집, 한국수자원학회, 제32권, 제4호, pp. 417-426.
  6. 남선우, 박상우 (1985). “대류-확산 모델을 이용한 홍수 추적에 관한 연구.” 한국수문학회지, 한국수문학회, 제19권, 제3호, pp. 265-270.
  7. 이상호, 이길성 (1994). “Muskingum-Cunge 방법에 의한 남한강 홍수추적.” 한국수문학회지, 한국수문학회, 제27권, 제4호, pp. 105-114.
  8. 전무갑, 지홍기 (1996). “외부전단력 적용에 의한 균일 대칭 복단면에서의 하도추적.” 한국수자원학회지, 한국수자원학회, 제29권, 제3호, pp. 217-228.
  9. 한국수자원공사 (2003). KOWACO 홍수분석모형 개발 보고서, 한국수자원공사 물관리센터
  10. Chow, V.T. (1959). Open-channel Hydraulics, McGraw-Hill, New York.
  11. Cunge, J.A. (1969). “On the subject of a flood propagation computation method (Muskingum method).” Journal of Hydraulic Research, IAHR, Vol. 7, No. 2, pp. 205-230.
  12. Cunge, J.A. (2001). “Volume conservation in variable parameter Muskingum-Cunge method: Discussion.” Journal of Hydraulic Engineering, ASCE, Vol. 127, No. 3, pp. 239.
  13. Cunge, J.A., Holly, F.M., and Verwey, A. (1980). Practical aspects of computational river hydraulics. Pittman.
  14. Doherty, J. (2000). Visual PEST: Model-independent Parameter Estimation. Watermark Computing & Waterloo Hydrogeologic, Waterloo, Ontario, Canada
  15. Hill, M.C. (1992). A computer program (MODFLOWP) for estimating parameters of a transient, three-dimensional, ground-water flow model using nonlinear regression. Open-File Report 91-484, U.S. geological Survey, Denver, CO, USA.
  16. Hill, M.C. (1998). Methods and guidelines for effective model calibration. Open-File Report 98-4005, U.S. geological Survey, Denver, CO, USA.
  17. Holly, F.M., Yang, J.C., Schwarz, P., Schaefer, J., Hsu, S.H., and Einhellig, R. (1990). Numerical simulation of unsteady water and sediment movement in multiply connected networks of mobile-bed channels. IIHR Report No. 343, Iowa Inst. of Hydr. Res., Iowa City, Iowa.
  18. Huang. G.-R., Hu, H.-P., and Yin, D.-K. (2001). “Stability condition analysis of Muskingum- Cunge flood routing model.” Shuikexue Jinzhan/Advances in Water Science, Vol. 12, No. 2, pp. 206-209.
  19. Hydrologic Engineering Center, (1990). HEC-1 flood hydrograph package, program users manual: U.S. Army Corps of Engineers, Davis, California.
  20. Koussis, A.D. (1983). “Unified theory for flood and pollution routing.” Journal of Hydraulic Engineering, ASCE, Vol. 109, No. 12, pp. 1652-1664.
  21. Liggett, J.A., and Cunge, J.A. (1975). “Numerical methods of solution of the unsteady flow equations.” Unsteady flow in open channels, K. Mohmmod and V. Yevjevich, eds., Water Resour. Publications, Fort Collins, CO, pp. 89-182.
  22. Marquardt, D.W. (1963). “An Algorithm for Least Square Estimation of Nonlinear Parameters.” J. Soc. of Ind. and Appl. Math., Vol. 11, No. 2, pp. 431-441.
  23. Perumal, M. and Sahoo, B. (2008). “Volume conservation controversy of the variable parameter Muskingum-Cunge method.” Water Resources research, Vol. 43, No. 5, art. No. W05409.
  24. Ponce, V.M., and Chaganti, P.V. (1994). “Variableparameter Muskingum-Cunge method revisited.” Journal of Hydrology, Vol. 162, No. 3-4, pp. 433-439.
  25. Ponce, V.M., Lohani, A.K., and Scheyhing, C. (1996). “Analytical verification of Muskingum- Cunge routing.” Journal of Hydrology, Vol. 174, No. 3-4, pp. 235-241.
  26. Ponce, V.M., and Lugo, A. (2001). “Modeling looped ratings in Muskingum-Cunge routing.” Journal of Hydraulic Engineering, ASCE, Vol. 6, No. 2, pp. 119-124.
  27. Ponce, V.M., and Yevjevich, V. (1978). “Muskingum-Cunge method with variable parameters.” Journal of Hydraulic Div., Vol. 104, No. 12, pp. 1663-1667.
  28. Price, R.K. (1985). “Flood routing.” Developments in hydraulic engineering, P. Novak, ed. Vol. 3, Elsevier, New York, pp. 129-173.
  29. Tang, X.-N., Knight, D.-W., and Samules, P.G. (1999). “Variable parameter Muskingum-Cunge method for flood routing in a compound channel.” Journal of Hydraulic Research, Vol. 37, No. 5, pp. 591-613.
  30. Tang, X.-N., Knight, D.-W., and Samules, P.G. (2001). “Volume conservation in variable parameter Muskingum-Cunge method: Closure.” Journal of Hydraulic Engineering, ASCE, Vol. 127, No. 3, pp. 239-240.
  31. Todini, E. (2007). “A mass conservative and water storage consistent variable parameter Muskingum-Cunge approach.” Hydrology and Earth System Science Discussions, Vol. 4, No. 3, pp. 1549-1592.

Cited by

  1. Estimation of Flood Water Level for Small to Medium Streams vol.14, pp.3, 2014,