DOI QR코드

DOI QR Code

Mg Atom Substitution for Nonstoichiometric Na+ β-Alumina: A First Principles Study

비화학양론적 Na+β-alumina를 위한 Mg 원자의 치환: 제일원리 계산

  • Kim, Dae-Hyun (Department of Materials Engineering, Korea University of Technology and Education) ;
  • Kim, Dae-Hee (Department of Materials Engineering, Korea University of Technology and Education) ;
  • Jeong, Yong-Chan (Department of Materials Engineering, Korea University of Technology and Education) ;
  • Seo, Hwa-Il (School of Information Technology, Korea University of Technology and Education) ;
  • Kim, Yeong-Cheol (Department of Materials Engineering, Korea University of Technology and Education)
  • 김대현 (한국기술교육대학교, 신소재공학과) ;
  • 김대희 (한국기술교육대학교, 신소재공학과) ;
  • 정용찬 (한국기술교육대학교, 신소재공학과) ;
  • 서화일 (한국기술교육대학교, 정보기술공학부) ;
  • 김영철 (한국기술교육대학교, 신소재공학과)
  • Published : 2010.02.27

Abstract

$Na^+$ ion conductivity can be improved by the substitution of an Mg atom for an Al atom to form a nonstoichiometric $Na^+$ $\beta$-alumina. We performed a first principles study to investigate the most stable substitution site of an Mg atom and the resulting structural change of the nonstoichiometric $Na^+$ $\beta$-alumina. Al atoms were classified as four different layers in the spinel block that are separated by conduction planes in the nonstoichiometric $Na^+$ $\beta$-alumina. The substitution of an Mg atom for an Al atom at a tetragonal site was more favorable than that at an octahedral site. The substitution in the spinel block was more favorable than that close to the conduction plane. This result was well explained by the volume changes of the polyhedrons, by the standard deviation of the Mg-O distance, and by the comparison with bulk MgO structure. Our result indicates that the most preferable site for the Mg atom was the tetrahedral site at the spinel block in the nonstoichiometric $Na^+$ $\beta$-alumina.

Keywords

References

  1. T. B. Kim, H. Y. Ahn and H. Y. Hur, Kor. J. Mater. Res., 16(3), 193 (2006). https://doi.org/10.3740/MRSK.2006.16.3.193
  2. Y. Yao and J. Kummer, J. Inorg. Nucl. Chem., 29(9), 2453 (1967). https://doi.org/10.1016/0022-1902(67)80301-4
  3. X. Hayes, L. Holden and B. Tofield, Solid State Ionics, 1(5-6), 373 (1980). https://doi.org/10.1016/0167-2738(80)90036-3
  4. H. Sato and R. Kikuchi, J. Chem. Phys., 55(2), 677 (1971). https://doi.org/10.1063/1.1676137
  5. W. Roth, Trans. Am. Cryst. Assoc., 11(1), 51 (1975).
  6. M. Zendejas and J. Thomas, Physica Scripta, T33(1), 235 (1990). https://doi.org/10.1088/0031-8949/1990/T33/045
  7. M. Zendejas and J. Thomas, Physica Scripta, 47(3), 440 (1993). https://doi.org/10.1088/0031-8949/47/3/014
  8. G. K. Edstrom, J. Thomas and Farrington, Acta Cryst. B, 47(2), 210 (1991). https://doi.org/10.1107/S0108768190012356
  9. S. Allen, A. Cooper, F. DeRosa, J. Remeika and S. Ulasi, Phys. Rev. B, 17(10), 4031 (1978). https://doi.org/10.1103/PhysRevB.17.4031
  10. D. McWhan, P. Dernier, C. Vettier, A. Cooper and J. Remeika, Phys. Rev. B, 17(10), 4043 (1978). https://doi.org/10.1103/PhysRevB.17.4043
  11. G. Mariotto, E. Cazzanelli and E. Zanghellini, Solid State Ionics, 57(1-2), 21 (1992). https://doi.org/10.1016/0167-2738(92)90058-W
  12. B. Hafskjold and X. Li, J. Phys. Condens. Matter, 7(15), 2949 (1995). https://doi.org/10.1088/0953-8984/7/15/003
  13. M. Alden, Solid State ionics, 20(1), 17 (1986). https://doi.org/10.1016/0167-2738(86)90029-9
  14. T. Mathews, R. Subasri and O. Sreedharan, Solid State Ionics, 148(1-2), 135 (2002). https://doi.org/10.1016/S0167-2738(02)00105-4
  15. G. Kresse and J. Hafner, Phys. Rev. B, 47(1), 558 (1993). https://doi.org/10.1103/PhysRevB.47.558
  16. G. Kresse and J. Furthuller, Comput. Mat. Sci., 6(1), 15 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
  17. G. Kresse and J. Furthuller, Phys. Rev. B, 54(16), 11169 (1996). https://doi.org/10.1103/PhysRevB.54.11169
  18. G. Kresse and D. Joubert, Phys. Rev. B, 59(3), 1758 (1999). https://doi.org/10.1103/PhysRevB.59.1758
  19. D. Vanderbilt, Phys. Rev. B, 41(11), 7892 (1990). https://doi.org/10.1103/PhysRevB.41.7892
  20. D. M. Wood and A. Zunger, J. Phys. A, 18(9), 1343 (1985). https://doi.org/10.1088/0305-4470/18/9/018
  21. P. Pulay, Chem. Phys. Lett., 73(2), 393 (1980). https://doi.org/10.1016/0009-2614(80)80396-4
  22. S. Hendricks and L. Pauling, Z. Kristallogr., 64(3), 303 (1926).
  23. J. Walker and C. Catlow, J. Phys. C Solid State Phys., 15(30), 6151 (1982). https://doi.org/10.1088/0022-3719/15/30/009