DOI QR코드

DOI QR Code

Surface Modification Silica Nanoparticles by Aerosol Self Assembly

에어로졸 자기조립에 의한 실리카 나노분말의 표면개질

  • Kil, Dae-Sup (Industrial Materials Research Department, Korea Institute of Geoscience and Mineral Resources) ;
  • Jang, Hee-Dong (Industrial Materials Research Department, Korea Institute of Geoscience and Mineral Resources) ;
  • Chang, Han-Kwon (Industrial Materials Research Department, Korea Institute of Geoscience and Mineral Resources) ;
  • Cho, Kuk (Industrial Materials Research Department, Korea Institute of Geoscience and Mineral Resources) ;
  • Kim, Sun-Kyung (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Oh, Kyoung-Joon (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Choi, Jin-Hoon (Department of Chemical and Biomolecular Engineering, Sogang University)
  • 길대섭 (한국지질자원연구원 산업원료화연구실) ;
  • 장희동 (한국지질자원연구원 산업원료화연구실) ;
  • 장한권 (한국지질자원연구원 산업원료화연구실) ;
  • 조국 (한국지질자원연구원 산업원료화연구실) ;
  • 김선경 (서강대학교 화공생명공학과) ;
  • 오경준 (서강대학교 화공생명공학과) ;
  • 최진훈 (서강대학교 화공생명공학과)
  • Published : 2010.02.27

Abstract

Surface modification of silica nanoparticles was investigated using an aerosol self assembly. Stearic acid was used as surface treating agent. A two-fluid jet nozzle was employed to generate an aerosol of the colloidal suspension, which contained 20 nm of silica nanoparticles, surface modifier, and ethyl alcohol. Powder properties such as morphology, specific surface area and pore size distribution were analyzed by SEM, BET and BJH methods, respectively. Surface properties of the silica power were analyzed by FT-IR. The OH bond of the $SiO_2$ surface was converted to a C-H bond. It was revealed that the hydrophilic surface changed to a hydrophobic one due to the aerosol self assembly. Morphology of the surface treated powder was nanostructured with lots of pores having an average diameter of around $2\;{\mu}m$. Depending on the stearic acid concentration (0.25 to 1.0 wt%), the pore size distribution of the particles and the degree of hydrophobicity ranged from 1.5 nm to 180 nm and 29.6% to 50.2%, respectively.

Keywords

References

  1. F. Caruso, R. A. Caruso, and H. Mohwald, Science, 282, 1111 (1998). https://doi.org/10.1126/science.282.5391.1111
  2. H. Giesche, J. Eur. Ceram. Soc., 14, 205 (1994). https://doi.org/10.1016/0955-2219(94)90088-4
  3. H. D. Jang, Aerosol Sci. Technol., 30, 477 (1999). https://doi.org/10.1080/027868299304516
  4. L. Madler, H. K. Kammler, R. Mueller and S. E. Pratsinis, J. Aerosol Sci., 33, 369 (2002). https://doi.org/10.1016/S0021-8502(01)00159-8
  5. C. Gellermann, W. Storch and H. Wolter, J. Sol-Gel Sci. Tech., 8, 173 (1997).
  6. S. Y. Oh, I. N. Kim, J. W. Choi, M. S. Kim and H. D Jang, J. Korean Ind. Eng. Chem., 11(8), 890 (2000).
  7. T. Kimura, M. Suzuki, S. Tomura, and K. Oda, Chemistry Letters, 32, 188 (2003). https://doi.org/10.1246/cl.2003.188
  8. Y. Nishida, H. Takahashi, M. Iso, M. Matsuoka and R. Partch, Advanced Powder Technol., 16, 639 (2005). https://doi.org/10.1163/156855205774483316
  9. K. N. Pham, D. Fullston, K. Sagoe-Crentsil, J. Colloid Interface Sci. 315, 123 (2007). https://doi.org/10.1016/j.jcis.2007.06.064
  10. R. Shen, P. H. C. Camargo, Y. Xia, and H. Yang, Langmuir, 24, 11189 (2008) https://doi.org/10.1021/la801985g
  11. Y. Ouabbas, A. Chamayou, L. Galet, M. Baron, G. Thomas, P. Grosseau, B. Guilhot, Powder Technol., 190, 200 (2009). https://doi.org/10.1016/j.powtec.2008.04.092
  12. H. Chang, J. Park, H. D. Jang, Colloids and Surfaces A: Physicochem. Eng. Aspects, 313314,140 (2008).
  13. E. Barret, L. G. Joyner, P. P. Halenda, J. Am. Chem. Soc., 73, 373 (1951). https://doi.org/10.1021/ja01145a126

Cited by

  1. Magnetite Nanoparticles Dispersed in Hybrid Aerogel for Hyperthermia Application vol.22, pp.7, 2012, https://doi.org/10.3740/MRSK.2012.22.7.362