초록
이 연구에서는 GFRP 보강근의 정착길이 설계식을 제안하기 위하여 실험적 연구를 수행하고 실험결과의 통계적 분석을 실시하였다. 총 104개의 수정인발실험을 완료하였으며 실험변수는 보강근의 묻힘길이(보강근 지름의 15, 30, 45배), 순피복두께(보강근 지름의 0.5~2.0배), 상부근 효과, 보강근 종류(국내산 2종, 국외산 1종 등 3종) 및 보강근지름(D10, D13, D16)이었다. 수정인발실험을 통해 얻은 실험 결과 평균부착강도를 결정하고, 평균부착강도에 대한 2변수 선형회귀분석을 실시하였다. 2변수 선형 회귀분석의 결과에 대하여 5% 분위수를 적용하여 보수적인 방법으로 정착 길이 설계식을 제안하였다. 이 연구의 제안식과 ACI 440.1R-06 식을 비교하였다. 순피복두께가 $1.0\;d_b$를 초과하는 경우 이 연구의 제안식이 더 경제적이고 순피복두께가 $1.0\;d_b$ 이하인 경우에는 이 연구의 식이 더 보수적으로서 이 연구의식을 사용하는 경우 보다 경제적이고 안전한 설계가 가능할 것으로 판단된다. 피복두께는 GFRP 보강근의 부착강도 발현에 큰 영향을 주는 것으로 나타났다.
The objective of this study was to propose a development length equation for GFRP bars. A total of 104 modified pullout tests were completed while the test variables were embedment length (15, 30, $45d_b$), net cover thickness ($0.5{\sim}2.0d_b$), top-cast bar effect, different GFRP bar types (K2KR, K3KR and AsUS), and bar diameters (10, 13, 16 mm). Average bond stresses were determined based on modified pullout test results. Two variable linear regression analysis was performed of the average bond stresses. Utilizing 5% fractile concept, a conservative development length design equation was derived. The design equation derived in this study was compared to the ACI 440 committee equation. The cross-comparison revealed that the current equation resulted in shorter development lengths than those determined by the ACI 440 equation when the net cover thickness was large (greater than $1.0d_b$). On the other hand, when the net cover thickness was small (equal to or less than $1.0d_b$), the development lengths required by the current equation were larger than those by the ACI equation. The bond stresses were significantly influenced by the cover thicknesses. The current equation results in development lengths that are more economical when the cover thickness is large, and more conservative lengths when the cover thickness is small than the ACI 440 committee equation.