DOI QR코드

DOI QR Code

Enhanced Absorption Efficiency of Solar Cells Using Guided-mode Resonance

도파모드 공진을 이용한 태양전지의 흡수효율 증대

  • Kim, Doo-Sung (Department of Electronic Engineering, Ajou University) ;
  • Kim, Sang-In (Department of Electronic Engineering, Ajou University) ;
  • Lee, Jae-Jin (Department of Electronic Engineering, Ajou University) ;
  • Lim, Han-Jo (Department of Electronic Engineering, Ajou University)
  • Published : 2010.02.25

Abstract

In this study, we propose a grating structure using guided-mode resonance (GMR) to increase the absorption efficiency of a silicon solar cell. The proposed solar cell design consists of a one-dimensional diffraction grating and a planar waveguide layer of poly-silicon deposited on a silver reflector. We investigate the influence of structure parameters such as grating period, waveguide thickness, grating width and grating depth. Optimal parameters are found using the particle swarm optimization (PSO) algorithm. In the optimized GMR-assisted solar cell, absorption efficiency up to 65.8% is achieved in the wavelength range of 300 nm~750 nm.

본 논문에서는 실리콘 태양전지의 흡수효율 증가를 위해 도파모드 공진 특성을 이용한 격자 구조를 제안하였다. 도파모드 공진을 이용함으로써 두께를 ~200 nm 수준으로 줄이면서도 높은 흡수율을 기대할 수 있는 태양전지 설계가 가능함을 확인하였다. 제안된 구조는 은으로 된 반사경 위에 격자구조를 갖는 Poly-Si 유전체 층이 존재하는 1-D 구조로서 각 구조변수들 즉 격자의 주기, 유전체 두께, 격자 간격 및 깊이 등이 흡수 효율에 어떤 영향을 미치는지 알아보고, 변수들의 조절을 통해 최적의 구조를 찾고자 시도하였다. PSO알고리즘을 사용하여 제안된 구조의 적절성을 확인 하였으며, 이로부터 65.8%의 유효 흡수율을 얻을 수 있었다.

Keywords

References

  1. R. D. MaConnell, "Assessment of the dye-sensitized solar cell," Renewable and Sustainable Energy Review 6, 273-295 (2002).
  2. N. C. Lindquist, W. A. Luhman, S. H. Oh, and R. J. Holmes, "Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells," Appl. Phys. Lett. 93, 123308 (2008). https://doi.org/10.1063/1.2988287
  3. J. G. Mutitu, S. Shi, C. Chen, T. Creazzo, A. Barnett, C. Honsberg, and D. W. Prather, "Thin film silicon solar cell design based on photonic crystal and diffractive grating structures," Opt. Exp. 16, 15238-15248 (2008). https://doi.org/10.1364/OE.16.015238
  4. A. Chutinan, N. P. Kherani, and S. Zukotynski, "Highefficiency photonic crystal solar cell architecture," Opt. Exp. 17, 8871-8878 (2009). https://doi.org/10.1364/OE.17.008871
  5. T. K. Gaylord and M. G. Moharam, "Analysis and applications of optical diffraction by gratings," Proc. of the IEEE 73, 894-913 (1985). https://doi.org/10.1109/PROC.1985.13220
  6. S. S. Wang, R. Magnusson, J. S. Bagby, and M. G. Moharam, "Guided-mode resonance in planar dielectric-layer diffraction gratings," J. Opt. Soc. Am. A 7, 1470-1474 (1990). https://doi.org/10.1364/JOSAA.7.001470
  7. S. Fan and J. D. Joannopoulos, "Analysis of guided resonance in photonic crystal slabs," Phys. Review B 65, 235112 (2002). https://doi.org/10.1103/PhysRevB.65.235112
  8. R. Magnusson and S. S. Wang, "New principle for optical filters," Appl. Phys. Lett. 61, 1022-1024 (1992). https://doi.org/10.1063/1.107703
  9. S. S. Wang and R. Magnusson, "Theory and applications of guided-mode resonance filters," Appl. Opt. 32, 2606-2612 (1993). https://doi.org/10.1364/AO.32.002606
  10. S. Tibuleac and R. Magnusson, "Reflection and transmission guided-mode resonance filters," J. Opt. Soc. Am. A 14, 1617-1626 (1997). https://doi.org/10.1364/JOSAA.14.001617
  11. Y. C. Lee, C. F. Huang, J. Y. Chang, and M. L. Wu, "Enhanced light trapping based on guided mode resonance effect for thin-film silicon solar cells with two filling-factor gratings," Opt. Exp. 16, 7969-7975 (2008). https://doi.org/10.1364/OE.16.007969
  12. P. H. Bolivar, M. Brucherseifer, J. G. Rivas, R. Gonzalo, A. L. Reynolds, M. Holker, and P. de Maagt, "Measurement of the dielectric constant and loss tangent of high dielectricconstant materials at terahertz frequencies," IEEE Transactions on Microwave Theory and Techniques 51, 1062-1066 (2003). https://doi.org/10.1109/TMTT.2003.809693
  13. K. Preston, B. Schmidt, and M. Lipson, "Polysilicon photonic resonators for large-scale 3D integration of optical networks," Opt. Exp. 15, 17283-17290 (2007). https://doi.org/10.1364/OE.15.017283
  14. L. Liao, "Low loss polysilicon waveguides for silicon photonics," Master's thesis, MIT (1997).
  15. Y. Park, E. Drouard, O. E. Daif, X. Letartre, P. Viktorovitch, A. Fave, A. Kaminski, M. Lemiti, and C. Seassal, "Absorption enhancement using photonic crystals for silicon thin film solar cells," Opt. Exp. 17, 14312-14321 (2009). https://doi.org/10.1364/OE.17.014312
  16. J. Kennedy and R. Eberhart, "Particle swarm optimization," Proc. IEEE Intl. Conf. on Neural Networks, 1942-1948 (1995).
  17. J. Robinson and Y. Rahmat-Samii, "Particle swarm optimization in electromagnetic," IEEE Trans. Antennas and Propagation 52, 397-407 (2004). https://doi.org/10.1109/TAP.2004.823969
  18. M. Clerc and J. Kennedy, "The particle swarm-explosion, stability, and convergence in a multidimensional complex space," IEEE Trans. Evolutionary Computation, 6, 58-73 (2002). https://doi.org/10.1109/4235.985692