Fiber-optic Temperature Sensor Based on Bending Loss of Thermally Expanded Core Fiber

열확장 코어 광섬유의 구부림 손실을 이용한 광섬유형 온도 센서

  • 김광택 (호남대학교 광전자공학과) ;
  • 강지훈 (호남대학교 광전자공학과) ;
  • 조규정 (호남대학교 광전자공학과) ;
  • 문남일 (호남대학교 광전자공학과)
  • Published : 2010.02.25


In this paper, we have proposed and demonstrated a simple fiber-optic temperature sensor based on the bending loss of a TEC(thermally expended core) fiber attached to a bi-metal. The deformation of the bi-metal caused by the change in its temperature induces the bending loss of the TEC fiber. The experimental result shows that the temperature sensitivity and operation temperature range of the device are controllable through the adjustment of the structure of the expanded core fiber. The fabrication procedure of the device is described in detail.


  1. K. T. V. Grattan and B. T. Meggitt, Optical Fiber Sensor Technology (Chapman & Hall, UK, 1995), Chapter 3.
  2. K. T. Kim, H. S. Song, J. P. Mah, K. B. Hong, K. Im, S. J. Baik, and Y. I. Yoon, "Hydrogn sensors based on palladium coated side-polished single mode fiber," IEEE Sensor Journal 7, 1767-1771 (2006).
  3. A. C. Boucouvalas and G. Georgiou, "Tapering of singlemode optical fibers," IEE proceedings J. Optoelectronics 133, 385-392 (1986).
  4. C. Fernandez-Valdivielso, I. R. Matias, and F. J. Arregui, "Simultaneous measurement of strain and temperature using a fiber Bragg grating and a thermochromic material," Sens. Actuators 101, 107-116 (2002).
  5. Z. J. Wang, Y. Zhou, X. W. Wang, and W. Jin, "A fiber-optic Bragg grating sensor for simultaneous static and dynamic temperature measurement on a heated cylinder in cross-flow," International Journal of Heat and Mass Transfer 46, 2983-2992 (2003).
  6. R.-S. Shen, J. Zhang, Y. Wang, R. Teng, B.-Y. Wang, Y.-S. Zhang, W.-P. Yan, J. Zheng, and G.-T. Du, "Study on high-temperature and high-pressure measurement by using metal-coated FBG," Microwave and Optical Technology Lett. 50, 1138-1140 (2008).
  7. K. T. Kim , K. H. Lee, E. S. Shin, H. S. Song, K. B. Hong, S. Hwangbo, and K. R. Sohn, "Characteristics of sidepolished thermally expanded core fiber and its application as a band-edge filter with a high cut-off property," Opt. Comm. 261, 51-55 (2006).
  8. K. Shiraishi, Y. Aizawa, and S. Kawakami, "Beam expending fiber using thermal diffusion of the dopant," J. Lightwave Technol. 8, 1151-1161 (1990).
  9. K. Shiraishi, T. Yanagi, and S. Kawakami, "Light propagation characteristics in thermally diffused expanded core fibers," J. Lightwave Technol. 11, 1584-1591 (1993).
  10. W. A. Gambling, H. Matsumura, and C. M. Ragdale, "Curvature and microbending losses in single mode optical fibers," Optical and Quantum Electronics 11, 43-59 (1979).
  11. M. Kihara, S. Tomita, and M. Matsumoto, "Loss characteristics of thermally diffused expanded core fiber," IEEE Photon. Technol. Lett. 4, 1390-1391 (1992).
  12. K. T. Kim and K. H. Park, "Fiber-optic temperature sensor based on single mode fused fiber coupler," J. Opt. Soc. Korea 12, 152-156 (2008).
  13. L. C. Bobb, P. M. Shanker, and H. D. Krumboltz, "Bending effects in biconically tapered single mode fibers," J. Lightwave Technol. 8, 1084-1090 (1990).

Cited by

  1. Fiber-Optic Distributed Overheating Detection Sensor Using an Optical Time Domain Refrectometry vol.22, pp.4, 2013,