DOI QR코드

DOI QR Code

Fiber-optic Temperature Sensor Based on Bending Loss of Thermally Expanded Core Fiber

열확장 코어 광섬유의 구부림 손실을 이용한 광섬유형 온도 센서

  • 김광택 (호남대학교 광전자공학과) ;
  • 강지훈 (호남대학교 광전자공학과) ;
  • 조규정 (호남대학교 광전자공학과) ;
  • 문남일 (호남대학교 광전자공학과)
  • Published : 2010.02.25

Abstract

In this paper, we have proposed and demonstrated a simple fiber-optic temperature sensor based on the bending loss of a TEC(thermally expended core) fiber attached to a bi-metal. The deformation of the bi-metal caused by the change in its temperature induces the bending loss of the TEC fiber. The experimental result shows that the temperature sensitivity and operation temperature range of the device are controllable through the adjustment of the structure of the expanded core fiber. The fabrication procedure of the device is described in detail.

본 논문은 바이메탈(bi-metal)에 부착된 열확장 코어 광섬유의 높은 구부림 손실 효과를 이용한 광섬유 온도 센서를 제안 및 구현하였다. 바이메탈(bi-metal plate)의 온도 변화에 의한 변형은 열확장 코어 광섬유의 구부림 손실을 발생시킨다. 실험결과 소자의 감도와 측정범위는 열확장 코어 광섬유의 구조를 조절하여 제어 될 수 있음을 보였다. 소자의 제조공정이 상세하게 기술되었다.

Keywords

References

  1. K. T. V. Grattan and B. T. Meggitt, Optical Fiber Sensor Technology (Chapman & Hall, UK, 1995), Chapter 3.
  2. K. T. Kim, H. S. Song, J. P. Mah, K. B. Hong, K. Im, S. J. Baik, and Y. I. Yoon, "Hydrogn sensors based on palladium coated side-polished single mode fiber," IEEE Sensor Journal 7, 1767-1771 (2006).
  3. A. C. Boucouvalas and G. Georgiou, "Tapering of singlemode optical fibers," IEE proceedings J. Optoelectronics 133, 385-392 (1986). https://doi.org/10.1049/ip-j.1986.0068
  4. C. Fernandez-Valdivielso, I. R. Matias, and F. J. Arregui, "Simultaneous measurement of strain and temperature using a fiber Bragg grating and a thermochromic material," Sens. Actuators 101, 107-116 (2002). https://doi.org/10.1016/S0924-4247(02)00188-7
  5. Z. J. Wang, Y. Zhou, X. W. Wang, and W. Jin, "A fiber-optic Bragg grating sensor for simultaneous static and dynamic temperature measurement on a heated cylinder in cross-flow," International Journal of Heat and Mass Transfer 46, 2983-2992 (2003). https://doi.org/10.1016/S0017-9310(03)00070-X
  6. R.-S. Shen, J. Zhang, Y. Wang, R. Teng, B.-Y. Wang, Y.-S. Zhang, W.-P. Yan, J. Zheng, and G.-T. Du, "Study on high-temperature and high-pressure measurement by using metal-coated FBG," Microwave and Optical Technology Lett. 50, 1138-1140 (2008). https://doi.org/10.1002/mop.23319
  7. K. T. Kim , K. H. Lee, E. S. Shin, H. S. Song, K. B. Hong, S. Hwangbo, and K. R. Sohn, "Characteristics of sidepolished thermally expanded core fiber and its application as a band-edge filter with a high cut-off property," Opt. Comm. 261, 51-55 (2006). https://doi.org/10.1016/j.optcom.2005.11.057
  8. K. Shiraishi, Y. Aizawa, and S. Kawakami, "Beam expending fiber using thermal diffusion of the dopant," J. Lightwave Technol. 8, 1151-1161 (1990). https://doi.org/10.1109/50.57835
  9. K. Shiraishi, T. Yanagi, and S. Kawakami, "Light propagation characteristics in thermally diffused expanded core fibers," J. Lightwave Technol. 11, 1584-1591 (1993). https://doi.org/10.1109/50.249900
  10. W. A. Gambling, H. Matsumura, and C. M. Ragdale, "Curvature and microbending losses in single mode optical fibers," Optical and Quantum Electronics 11, 43-59 (1979). https://doi.org/10.1007/BF00624057
  11. M. Kihara, S. Tomita, and M. Matsumoto, "Loss characteristics of thermally diffused expanded core fiber," IEEE Photon. Technol. Lett. 4, 1390-1391 (1992). https://doi.org/10.1109/68.180586
  12. K. T. Kim and K. H. Park, "Fiber-optic temperature sensor based on single mode fused fiber coupler," J. Opt. Soc. Korea 12, 152-156 (2008). https://doi.org/10.3807/JOSK.2008.12.3.152
  13. L. C. Bobb, P. M. Shanker, and H. D. Krumboltz, "Bending effects in biconically tapered single mode fibers," J. Lightwave Technol. 8, 1084-1090 (1990). https://doi.org/10.1109/50.56411

Cited by

  1. Fiber-Optic Distributed Overheating Detection Sensor Using an Optical Time Domain Refrectometry vol.22, pp.4, 2013, https://doi.org/10.5369/JSST.2013.22.4.297