DOI QR코드

DOI QR Code

Measurement of Skin Dose and Percentage Depth Does in Build-up Region Using a Fiber-optic Dosimeter

광섬유 방사선량계를 이용한 선량보강 영역에서의 심부선량 백분율과 피부 선량률 측정

  • Cho, Dong-Hyun (School of Biomedical Engineering, College of Biomedical & Health Science, Konkuk University) ;
  • Jang, Kyoung-Won (School of Biomedical Engineering, College of Biomedical & Health Science, Konkuk University) ;
  • Yoo, Wook-Jae (School of Biomedical Engineering, College of Biomedical & Health Science, Konkuk University) ;
  • Seo, Jeong-Ki (School of Biomedical Engineering, College of Biomedical & Health Science, Konkuk University) ;
  • Heo, Ji-Yeon (School of Biomedical Engineering, College of Biomedical & Health Science, Konkuk University) ;
  • Lee, Bong-Soo (School of Biomedical Engineering, College of Biomedical & Health Science, Konkuk University) ;
  • Cho, Young-Ho (Department of Radiological Science, College of Health & Medical Science, Catholic University of Daegu)
  • 조동현 (건국대학교 의료생명대학 의학공학부, 의공학실용기술연구소) ;
  • 장경원 (건국대학교 의료생명대학 의학공학부, 의공학실용기술연구소) ;
  • 유욱재 (건국대학교 의료생명대학 의학공학부, 의공학실용기술연구소) ;
  • 서정기 (건국대학교 의료생명대학 의학공학부, 의공학실용기술연구소) ;
  • 허지연 (건국대학교 의료생명대학 의학공학부, 의공학실용기술연구소) ;
  • 이봉수 (건국대학교 의료생명대학 의학공학부, 의공학실용기술연구소) ;
  • 조영호 (대구가톨릭대학교 보건과학대학 방사선학과)
  • Published : 2010.02.25

Abstract

In this study, we have fabricated a fiber-optic dosimeter using an organic scintillator and a plastic optical fiber. The dosimeter measure skin dose and percentage depth dose in a build-up region for an incident high energy photon beam. The scintillating light generated in the organic sensor probe embedded in a solid water phantom is guided by 30 m plastic optical fiber to a light-measuring device such as a PMT or an electrometer. In addition, using a fiber-optic dosimeter or a GAFCHROMIC EBT film, skin dose and percentage depth dose in the build-up region are measured and compared.

본 연구에서는 고 에너지 광자선을 조사 할 때, 선량보강 영영에서의 피부 선량률을 측정을 위해 유기 섬광체와 플라스틱 광섬유를 사용한 광섬유 방사선량계를 제작하였다. 광섬유 방사선량계의 센서부에서 발생된 섬광빛은 30 m 길이의 광섬유를 통해 전달되어 광증배관과 전류계로 측정된다. 광섬유 방사선량계로 측정한 선량보강 영역에서의 피부 선량률은 이온 전리함 및 GAFCHROMIC EBT 필름의 측정 결과와 비교 및 분석 하였다.

Keywords

References

  1. F. M. Khan, The Physics of Radiation Therapy, 2nd ed. (Williams & Wilkims, Maryland, USA, 1984) pp. 323-332.
  2. D. Dubois, W. Bice, B. Braddord, T. Schneid, and R. Engelmeier, "Moldable tissue equivalent bolus for high-energy photon and electron therapy," Med. Phys. 23, 1547-1549 (1996). https://doi.org/10.1118/1.597820
  3. J. W. Hopewell, "Biological effects of irradiation on skin and recommended dose limits," Radiat. Prot. Dosim. 39, 11-24 (1991). https://doi.org/10.1093/rpd/39.1-3.11
  4. ICRP Publication 60, 1990 recommendations of the international commission on radiological protection, 1991.
  5. ICRU Report 39, determination of dose equivalent resulting from external radiation sources, international commission on radiation units and measurements, Bethesda, 1985.
  6. T. Kron, A. Elliot, T. Wong, G. Showell, B. Clubb, and P. Metcalfe, "X-ray surface dose measurement using TLD extrapolation," Med. Phys. 20, 703-711 (1993). https://doi.org/10.1118/1.597019
  7. D. J. Manson, D. E. Velkey, J. A. Purdy, and G. D. Oliver, "Measurement of surface dose using build-up curve obtained with extrapolation chamber," Radiology 115, 473-474 (1975). https://doi.org/10.1148/115.2.473
  8. B. M. Rogina and B. Vojnovic, "Application of optical fiber sensors for radiation dosimetry," Radiat. Meas. 26, 599-602 (1996). https://doi.org/10.1016/1350-4487(96)00032-7
  9. T. Aoyama, S. Koyama, M. Tsuzaka, and H. Maekoshi, "A depth-dose measuring device using a multichannel scintillating fiber array for electron beam therapy," Med. Phys. 24, 1235-1239 (1997). https://doi.org/10.1118/1.598143
  10. M. J. Butson, T. Cheung, P. K. N. Yu, S. Pricd, and M. Bailey, "Measurement of radiotherapy superficial x-ray dose under eye shields with radiochromic film," Phys. Medica 24, 29-33 (2008). https://doi.org/10.1016/j.ejmp.2007.11.001
  11. K. W. Jang, D. H. Cho, W. J. Yoo, S. H. Shin, H. S. Kim, S. C. Chung, B. Lee, H. Cho, and S. Kim, "Development of two-dimensional fiber-optic radiation sensor for high energy photon beam therapy dosimetry," J. Nucl. Sci. Technol. supplement 5, 466-469 (2008).
  12. D. H. Cho, K. W. Jang, W. J. Yoo, S. C. Chung, G. R. Tack, G. M. Eom, B. Lee, H. Cho, and S. Kim, "Performance evaluation of one-dimensional fiber-optic radiation sensor for measuring high energy electron beam using a charge-coupled device," J. Nucl. Sci. Technol. supplement 5, 477-480 (2008).
  13. D. Letoumeau, J. Pouliot, and R. Toy, "Miniature scintillating detector for small field radiation therapy," Med. Phys. 26, 2555-2561 (1999). https://doi.org/10.1118/1.598793
  14. A. S. Beddar, T. J. Kinsella, A. Ikhlef, and C. H. Sibata, "A miniature scintillator-fiberoptic-PMT detector system for the dosimetry of small fields in streotactic radiosurgery," IEEE Trans. Nucl. Sci. 48, 924-928 (2001). https://doi.org/10.1109/23.940133
  15. L. Archambault, A. S. Beddar, L. Gingras, F. Lacroix, R. Roy, and L. Beaulieu, "Water-equivalent dosimeter array for small-field external beam radiotherapy," Med. Phys. 34, 1583-1592 (2007). https://doi.org/10.1118/1.2719363
  16. A. S. Beddar, "Plastic scintillation dosimetry and its application to radiotherapy," Radiat. Meas. 41, S124-S133 (2007). https://doi.org/10.1016/j.radmeas.2007.01.002
  17. D. H. Cho, K. W. Jang, W. J. Yoo, B. Lee, H. S. Cho, and S. Kim, "Fabrication and performance evaluation of onedimensional fiber-optic radiation sensor for x-ray profile irradiated by clinical linear accelerator," J. Kor. Sensors. Soc. 16, 33-38 (2007).
  18. W. R. Hendee, G. S. Ibbott, and E. G. Hendee, Radiation Therapy Physics, 3rd ed. (John Wiley & Sons, Inc., Hoboken, New Jersey, USA, 2005), p. 130.

Cited by

  1. Comparative Studies on Absorbed Dose by Geant4-based Simulation Using DICOM File and Gafchromic EBT2 Film vol.24, pp.1, 2013, https://doi.org/10.14316/pmp.2013.24.1.48