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WEAK CONVERGENCE OF AN ITERATIVE METHOD

FOR EQUILIBRIUM PROBLEMS AND RELATIVELY

NONEXPANSIVE MAPPINGS

Sun Young Cho∗ and Shin Min Kang

Abstract. The purpose of this paper is to consider an iterative
method for an equilibrium problem and a family relatively nonex-
pansive mappings. Weak convergence theorems are established in
uniformly smooth and uniformly convex Banach spaces.

1. Introduction

Let E be a real Banach space, E∗ the dual space of E and C a
nonempty closed convex subset of E. Let f be a bifunction from C ×C
to R, where R denotes the set of real numbers. The equilibrium problem
is to find p ∈ C such that

(1.1) f(p, y) ≥ 0, ∀y ∈ C.

In this paper, we use EP (f) to denote the solution set of the equilib-
rium problem (1.1). That is,

EP (f) = {p ∈ C : f(p, y) ≥ 0, ∀y ∈ C}
Given a mapping S : C → E∗, let f(x, y) = 〈Sx, y − x〉, x, y ∈ C. Then
p ∈ EP (f) if and only if

〈Sp, y − p〉 ≥ 0, ∀y ∈ C.

That is, p is a solution of the above variational inequality. Numerous
problems in physics, optimization and economics reduce to find a solu-
tion of (1.1); see [5, 9-11, 15].
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Recall that a mapping T is said to be nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ C.

A point x ∈ C is a fixed point of T provided Tx = x. In this paper, we
use F (T ) to denote the fixed point set of T . We use → and ⇀ to denote
the strong convergence and weak convergence, respectively.

The topic on common fixed points of a family nonexpansive mapping
is hot, see, for example [7, 8, 11, 16 - 18] and the references therein.
Finding an optimal point in the intersection of the fixed point sets of
a family of nonexpansive mappings is a task that occurs frequently in
various areas of mathematical sciences and engineering. For example,
the well-known convex feasibility problem reduces to finding a point in
the intersection of the fixed point sets of a family of nonexpansive map-
pings. The problem of finding an optimal point that minimizes a given
cost function over common fixed point set of a family of nonexpansive
mappings is of wide interdisciplinary interest and practical importance;
see, for example, [23] and the reference therein.

For equilibrium problem, many authors considered the problem of
finding a common element of the fixed point set of nonexpansive map-
pings and solution set of the equilibrium problem (1.1) based on itera-
tive methods. Weak and strong convergence theorems are established in
Hilbert spaces and Banach spaces; see, for example, [8, 16, 20] and the
references therein. Relatively nonexpansive mappings as a important
generalization of nonexpansive mappings have been studied by many
authors; see [13, 14, 16, 20]. In this paper, we consider an iterative
method which was introduced by Takahashi and Zembayashi [20] for the
equilibrium problem (1.1) and common fixed point problem of a family
of relatively nonexpansive mappings. A weak convergence theorem is
established in uniformly smooth and uniformly convex Banach spaces.

2. Preliminaries

Let E be a Banach space with dual E∗. We denote by J the normal-
ized duality mapping from E to 2E∗ defined by

Jx = {f ∗ ∈ E∗ : 〈x, f ∗〉 = ‖x‖2 = ‖f ∗‖2},
where 〈·, ·〉 denotes the generalized duality pairing.

A Banach space E is said to be strictly convex if ‖x+y
2
‖ < 1 for all

x, y ∈ E with ‖x‖ = ‖y‖ = 1 and x 6= y. It is said to be uniformly
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convex if limn→∞ ‖xn− yn‖ = 0 for any two sequences {xn} and {yn} in
E such that ‖xn‖ = ‖yn‖ = 1 and limn→∞ ‖xn+yn

2
‖ = 1. Let U = {x ∈

E : ‖x‖ = 1} be the unit sphere of E. Then the Banach space E is said
to be smooth provided

(2.1) lim
t→0

‖x + ty‖ − ‖x‖
t

exists for each x, y ∈ U. It is also said to be uniformly smooth if the
limit (2.1) is attained uniformly for x, y ∈ E. It is well known that if E
is uniformly smooth, then J is uniformly norm-to-norm continuous on
each bounded subset of E. It is also well known that if E is uniformly
smooth if and only if E∗ is uniformly convex.

As we all know that if C is a nonempty closed convex subset of a
Hilbert space H and PC : H → C is the metric projection of H onto C,
then PC is nonexpansive. This fact actually characterizes Hilbert spaces
and consequently, it is not available in more general Banach spaces. In
this connection, Alber [2] recently introduced a generalized projection
operator ΠC in a Banach space E which is an analogue of the metric
projection in Hilbert spaces.

Next, we assume that E is a smooth Banach space. Consider the
functional defined by

(2.2) φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2 for x, y ∈ E.

Observe that, in a Hilbert space H, (2.2) is reduced to φ(x, y) =
‖x − y‖2, x, y ∈ H. The generalized projection ΠC : E → C is a map
that assigns to an arbitrary point x ∈ E the minimum point of the
functional φ(x, y), that is, ΠCx = x̄, where x̄ is the solution to the
minimization problem

φ(x̄, x) = min
y∈C

φ(y, x)

existence and uniqueness of the operator ΠC follows from the properties
of the functional φ(x, y) and strict monotonicity of the mapping J (see,
for example, [1,2,6,21]). In Hilbert spaces, ΠC = PC . It is obvious from
the definition of function φ that

(2.3) (‖y‖ − ‖x‖)2 ≤ φ(y, x) ≤ (‖y‖+ ‖x‖)2, ∀x, y ∈ E.

Remark 2.1. If E is a reflexive, strictly convex and smooth Banach
space, then for x, y ∈ E, φ(x, y) = 0 if and only if x = y. It is sufficient
to show that if φ(x, y) = 0 then x = y. From (2.3), we have ‖x‖ = ‖y‖.
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This implies 〈x, Jy〉 = ‖x‖2 = ‖Jy‖2. From the definition of J, one has
Jx = Jy. Therefore, we have x = y; see [6, 21] for more details.

Let C be a nonempty closed convex subset of E and T a mapping
from C into itself. A point p in C is said to be an asymptotic fixed point
of T [19] if C contains a sequence {xn} which converges weakly to p such
that limn→∞ ‖xn − Txn‖ = 0. The set of asymptotic fixed points of T

will be denoted by F̃ (T ). A mapping T from C into itself is said to be

relatively nonexpansive [3,4] if F̃ (T ) = F (T ) 6= ∅ and φ(p, Tx) ≤ φ(p, x)
for all x ∈ C and p ∈ F (T ). The asymptotic behavior of a relatively
nonexpansive mappings was studied in [3, 4].

For the equilibrium problem (1.1), Let us assume that f satisfies the
following conditions:

(A1) f(x, x) = 0,∀x ∈ C;
(A2) f is monotone, i.e., f(x, y) + f(y, x) ≤ 0,∀x, y ∈ C;
(A3)

lim sup
t↓0

f(tz + (1− t)x, y) ≤ f(x, y),∀x, y, z ∈ C;

(A4) for each x ∈ C, y 7→ f(x, y) is convex and lower semi-continuous.

Recently, Takahashi and Zembayshi [20] introduced an iterative method
for finding a common element in the fixed point set of a relatively non-
expansive mapping and in the solution set of the equilibrium problem
(1.1). weak convergence theorems are established in a Banach space. To
be more precise, they obtained the following result.

Theorem 2.1 (Thoerem TZ). Let E be a uniformly smooth and
uniformly convex Banach space, and let C be a nonempty closed convex
subset of E. Let f be a bifunction from C×C to R satisfying (A1)-(A4)
and let T be a relatively nonexpansive mapping from C into itself such
that F (T ) ∩ EP (f) 6= ∅. Let {xn} be a sequence generated by u1 ∈ E,

(2.4){
xn ∈ C such that f(xn, y) + 1

rn
〈y − xn, Jxn − Jun〉 ≥ 0, ∀y ∈ C,

un+1 = J−1(αnJxn + (1− αn)JTxn)

for every n ≥ 1, where J is the duality mapping on E, {αn} ⊂ [0, 1]
satisfies lim infn→∞ αn(1 − αn) > 0 and {rn} ⊂ [a,∞) for some a > 0.
If J is weakly sequentially continuous, then {xn} converges weakly to
z ∈ F (T ) ∩ EP (f), where z = limn→∞ ΠF (T )∩EP (f)xn.



Weak convergence of an iterative method 109

In order to our main results, we need the following lemmas.

Lemma 2.2. ([2]) Let C be a nonempty closed convex subset of a
smooth Banach space E and x ∈ E. Then, x0 = ΠCx if and only if

〈x0 − y, Jx− Jx0〉 ≥ 0 ∀y ∈ C.

Lemma 2.3. ([14]) Let E be a strictly convex and smooth Banach
space, C a nonempty closed convex subset of E and T : C → C a
relatively nonexpansive mapping. Then F (T ) is a closed convex subset
of C.

Lemma 2.4. ([12]) Let E be a smooth and uniformly convex Banach
space and let r > 0. Then there exists a strictly increasing, continuous
and convex function g : [0, 2r] → R such that g(0) = 0 and g(‖x−y‖) ≤
φ(x, y) for all x, y ∈ Br.

Lemma 2.5. ([5]) Let C be a closed convex subset of a smooth, strictly
convex and reflexive Banach space E. Let f be a bifunction from C×C
to R satisfying (A1)-(A4). Let r > 0 and x ∈ E. Then, there exists
z ∈ C such that

f(z, y) +
1

r
〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C.

Lemma 2.6. Let C be a closed convex subset of a smooth, strictly
convex and reflexive Banach space E. Let f be a bifunction from C×C
to R satisfying (A1)-(A4). Let r > 0 and x ∈ E. Define a mapping
Tr : E → C by

Trx = {z ∈ C : f(z, y) +
1

r
〈y − z, Jz − Jx〉, ∀y ∈ C}.

Then the following conclusions hold:

(1) Tr is single-valued;
(2) Tr is a firmly nonexpansive-type mapping, i.e., for all x, y ∈ E,

〈Trx− Try, JTrx− JTry〉 ≤ 〈Trx− Try, Jx− Jy〉
(3) F (Tr) = EP (f);
(4) Tr is relatively nonexpansive;
(5)

φ(q, Srx) + φ(Srx, x) ≤ φ(q, x), ∀q ∈ F (Tr);

(6) EP (f) is closed and convex.
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Lemma 2.7. ([22]) Let p > 1 and s > 0 be two fixed real numbers.
Then a Banach space E is uniformly convex if and only if there exists
a continuous strictly increasing convex functiong : [0,∞) → [0,∞) with
g(0) = 0 such that

‖λx + (1− λ)y‖p ≤ λ‖x‖p + (1− λ)‖y‖p − wp(λ)g(‖x− y‖)
for all x, y ∈ Bs(0) = {x ∈ E : ‖x‖ ≤ s} and λ ∈ [0, 1], where wp(λ) =
λp(1− λ) + λ(1− λ)p.

Lemma 2.8. Let E be a uniformly convex Banach space, s > 0 a
positive number and Bs(0) a closed ball of E. There exits a continuous,
strictly increasing and convex function g : [0,∞) → [0,∞) with g(0) = 0
such that

‖
N∑

i=1

αixi‖2 ≤
N∑

i=1

αi‖xi‖2 − α1α2g(‖x1 − x2‖)

for all x1, x2, . . . , xN ∈ Bs(0) = {x ∈ E : ‖x‖ ≤ s} and α1, α2, . . . , αN ∈
[0, 1] such that

∑N
i=1 αi = 1.

Proof. We prove it by inductions. For N = 2, we from Lemma 2.7 see
that Lemma 2.8 holds. For N = j, where j ≥ 2 is some integer, suppose
that Lemma 2.8 holds. We see that Lemma 2.7 still holds for N = j +1.
Indeed, from Lemma 2.7, we see that

‖α1x1 + α2x2 + · · ·+ αjxj + αj+1xj+1‖2

= ‖(1− αj+1)
( α1

1− αj+1

x1 +
α2

1− αj+1

x2 + · · ·+ αj

1− αj+1

xj

)
+ αj+1xj+1‖2

≤ (1− αj+1)‖ α1

1− αj+1

x1 +
α2

1− αj+1

x2 + · · ·+ αj

1− αj+1

xj‖2 + αj+1‖xj+1‖2

αj(1− αj+1)g
(
‖( α1

1− αj+1

x1 +
α2

1− αj+1

x2 + · · ·+ αj

1− αj+1

xj

)− xj+1‖
)

≤ (1− αj+1)
( α1

1− αj+1

‖x1‖2 +
α2

1− αj+1

‖x2‖2 + · · ·+ αj

1− αj+1

‖xj‖2

− α1α2

(1− αj+1)(1− αj+1)
g(‖x1 − x2‖)

)
+ αj+1‖xj+1‖2

= α1‖x1‖2 + α2‖x2‖2 + · · ·+ αj‖xj‖2 + αj+1‖xj+1‖2 − α1α2

1− αj+1

g(‖x1 − x2‖)

≤ α1‖x1‖2 + α2‖x2‖2 + · · ·+ αj‖xj‖2 + αj+1‖xj+1‖2 − α1α2g(‖x1 − x2‖).
This completes the proof.
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3. Main results

Theorem 3.1. Let E be a uniformly smooth and uniformly convex
Banach space, C a nonempty closed convex subset of E and f a bi-
function from C × C to R satisfying (A1)-(A4). Let Ti : C → C be a
relatively nonexpansive mappings for every i ∈ {1, 2, . . . , N}. Assume
that F = ∩N

i=1F (Ti) ∩ EP (f) is nonempty. Let {rn} be a sequence in
[a,∞) for some a > 0 and {αn,0}, {αn,1}, . . . , and {αn,N} are sequences
in (0, 1). Let {xn} be a sequence generated by u1 ∈ E,

{
xn ∈ C such that f(xn, y) + 1

rn
〈y − xn, Jxn − Jun〉 ≥ 0, ∀y ∈ C,

un+1 = J−1
(
αn,0Jxn +

∑N
i=1 αn,iJTixn

)

for every n ≥ 1, where J is the duality mapping on E. Assume that the
control sequences satisfy the following restrictions:

(a) αn,0 + αn,1 + · · ·+ αn,N = 1, ∀n ≥ 0;
(b) lim infn→∞ αn,0αn,i > 0, ∀i = 1, 2, . . . , N.

If J is weakly sequentially continuous, then {xn} converges weakly to
z ∈ F , where z = limn→∞ ΠFxn.

Proof. First, we show that the sequence {xn} is bounded. Fixing
p ∈ F , we see that
(3.1)
φ(p, xn+1) = φ(p, Trnun+1) ≤ φ(p, un+1)

= φ
(
p, J−1

(
αn,0Jxn +

N∑
i=1

(αn,iJTixn)
))

= ‖p‖2 − 2〈p, αn,0Jxn +
N∑

i=1

(αn,iJTixn)〉+ ‖αn,0Jxn +
N∑

i=1

(αn,iJTixn)‖2

≤ ‖p‖2 − 2αn,0〈p, Jxn〉 − 2
N∑

i=1

(
αn,i〈p, JTixn〉

)
+ αn,0‖xn‖2

+
N∑

i=1

(
αn,i‖Tixn‖2

)
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= ‖p‖2 − 2αn,0〈p, Jxn〉 − 2
N∑

i=1

(
αn,i〈p, JTixn〉

)
+ αn,0‖xn‖2

+
N∑

i=1

(
αn,i‖Tixn‖2

)

= αn,0φ(p, xn) +
N∑

i=1

(
αn,iφ(p, Tixn)

)

≤ αn,0φ(p, xn) +
N∑

i=1

(
αn,iφ(p, xn)

)
= φ(p, xn).

It follows that limn→∞ φ(p, xn) exists. It follows from (2.3) that {xn}
is bounded. Let r = supn≥1{‖xn‖, ‖T1xn‖, . . . , ‖TNxn‖}. From Lemma
2.8, we see that
(3.2)
φ(p, xn+1) = φ(p, Trnun+1) ≤ φ(p, un+1)

= φ
(
p, J−1

(
αn,0Jxn +

N∑
i=1

(αn,iJTixn)
))

= ‖p‖2 − 2〈p, αn,0Jxn +
N∑

i=1

(αn,iJTixn)〉+ ‖αn,0Jxn +
N∑

i=1

(αn,iJTixn)‖2

≤ ‖p‖2 − 2αn,0〈p, Jxn〉 − 2
N∑

i=1

(
αn,i〈p, JTixn〉

)
+ αn,0‖Jxn‖2

+
N∑

i=1

(
αn,i‖JTixn‖2

)− αn,0αn,1g(‖Jxn − JT1xn‖)

= ‖p‖2 − 2αn,0〈p, Jxn〉 − 2
N∑

i=1

(
αn,i〈p, JTixn〉

)
+ αn,0‖xn‖2

−+
N∑

i=1

(
αn,i‖Tixn‖2

)
αn,0αn,1g(‖Jxn − JT1xn‖)

= αn,0φ(p, xn) +
N∑

i=1

(
αn,iφ(p, Tixn)

)− αn,0αn,1g(‖Jxn − JT1xn‖)
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≤ αn,0φ(p, xn) +
N∑

i=1

(
αn,iφ(p, xn)

)− αn,0αn,1g(‖Jxn − JT1xn‖)

= φ(p, xn)− αn,0αn,1g(‖Jxn − JT1xn‖).
It follows that

(3.3) αn,0αn,1g(‖Jxn − JT1xn‖) ≤ φ(p, xn)− φ(p, xn+1).

This implies that limn→∞ g(‖Jxn − JT1xn‖) = 0. From the property of
g, we can obtain that

(3.4) lim
n→∞

‖Jxn − JT1xn‖ = 0

Since J−1 is also uniformly norm-to-norm continuous on bounded sets,
we obtain that

(3.5) lim
n→∞

‖xn − T1xn‖ = 0.

Repeating (3.2)-(3.5), we can obtain that

(3.6) lim
n→∞

‖xn − Tixn‖ = 0, ∀i ∈ {1, 2, . . . , N}.

Since {xn} is bounded, we may, without loss of generality, assume that
subsequence {xn} converges weakly to p ∈ C. In view of definition of rel-

atively nonexpansive mappings, we see that p ∈ ∩N
i=1F̃ (Ti) = ∩N

i=1F (Ti).
Next, we show that p ∈ EP (f). Let s = supn≥1{‖xn‖, ‖un‖}. From

Lemma 2.6, we see that there exists a continuous, strictly increasing and
convex function g1 with g1(0) = 0 such that

g1(‖x− y‖) ≤ φ(x, y)

for all x, y ∈ Bs. Putting xn = Trnun and from Lemma 2.4, and (3.1),
we have

g1(‖xn − un‖) ≤ φ(xn, un) ≤ φ(q, un)− φ(q, xn) ≤ φ(q, xn−1)− φ(q, xn),

where q ∈ F . Noticing that limn→∞ φ(p, xn) exists, we have

lim
n→∞

g1(‖xn − un‖) = 0.

It follows from the property of g1 that limn→∞ ‖xn− un‖ = 0. Since J is
uniformly norm-to-norm continuous on bounded sets, we obtain that

(3.7) lim
n→∞

‖Jxn − Jun‖ = 0.
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From the assumption rn ≥ a, we see that

(3.8) lim
n→∞

‖Jxn − Jun‖
rn

= 0.

By virtue of xn = Trnun, we obtain that

f(xn, y) +
1

rn

〈y − xn, Jxn − Jun〉 ≥ 0, ∀y ∈ C.

from the (A2), we see that

‖y − xn‖‖Jxn − Jun‖
rn

≥ 1

rn

〈y − xn, Jxn − Jun〉
≥ −f(xn, y)

≥ f(y, xn), ∀y ∈ C.

Letting n →∞ in above inequality and from (A4), we have

f(y, p) ≤ 0, ∀y ∈ C.

For 0 < t < 1 and y ∈ C, define yt = ty+(1−t)p. Noticing that y, p ∈ C,
we obtain that yt ∈ C, which yields that f(yt, p) ≤ 0. It follows from
(A1) that

0 = f(yt, yt) ≤ tf(yt, y) + (1− t)f(yt, p) ≤ tf(yt, y).

That is,

f(yt, y) ≥ 0.

Let t ↓ 0, from (A3), we obtain that f(p, y) ≥ 0, for ∀y ∈ C. This implies
that p ∈ EP (f). This shows that p ∈ F .

Define yn = ΠFxn for all n ≥ 1. From (3.1), we see that

(3.9) φ(yn, xn+1) ≤ φ(yn, xn).

It follows from Lemma 2.3 that

φ(yn+1, xn+1) = φ(ΠF xn+1, xn+1)

≤ φ(yn, xn+1)− φ(yn, ΠF xn+1)

= φ(yn, xn+1)− φ(yn, yn+1)

≤ φ(yn, xn+1).

From (3.9), we have

φ(yn+1, xn+1) ≤ φ(yn, xn),
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which yields that {φ(yn, xn)} is a convergence sequence. It also follows
from (3.9) that

(3.10) φ(yn, xn+m) ≤ φ(yn, xn), ∀m ≥ 1.

From yn+m = ΠF xn+m and Lemma 2.6, we have

φ(yn, yn+m) + φ(yn+m, xn+m) ≤ φ(yn, xn+m) ≤ φ(yn, xn),

which yields that

φ(yn, yn+m) ≤ φ(yn, xn)− φ(yn+m, xn+m).

Let r = supn≥1{‖yn‖}. Noticing that Lemma 2.4, we see that there exists
a continuous, strictly increasing, and convex function g with g(0) = 0
such that g(‖x − y‖) ≤ φ(x, y) for all x, y ∈ Br. Therefore, we obtain
that

g(‖yn − yn+m‖) ≤ φ(yn, yn+m) ≤ φ(yn, xn)− φ(yn+m, xn+m).

Since {φ(yn, xn)} is a convergent sequence, from the property of g, we
obtain that {yn} is a Cauchy sequence. Since F is closed, we see that
{yn} converges strongly to z ∈ F .

On the other hand, noticing that p ∈ F , yn = ΠFxn and Lemma 2.2,
we have

〈yn − p, Jxn − Jyn〉 ≥ 0.

Since J is weakly sequentially continuous, letting n → ∞, we obtain
that

〈z − p, Jp− Jz〉 ≥ 0.

From the monotonicity of J , we see that

〈z − p, Jp− Jz〉 ≤ 0.

Noticing that E is uniformly convex, we have z = p. This completes the
proof.

Remark 2.2. If Ti = T for each i ∈ {1, 2, . . . , N}, then Theorem 3.1 is
reduced to Theorem TZ.

For the special case, letting N = 2, we have the following results.

Corollary 2.3. Let E be a uniformly smooth and uniformly convex
Banach space, C a nonempty closed convex subset of E and f a bi-
function from C × C to R satisfying (A1)-(A4). Let T : C → C
and S : C → C be two relatively nonexpansive mappings such that
F (T ) ∩ F (S) is nonempty. Let {rn} be a sequence in [a,∞) for some
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a > 0 and {αn}, {βn} and {γn} are sequences in (0, 1). Let {xn} be a
sequence generated by u1 ∈ E,
{

xn ∈ C such that f(xn, y) + 1
rn
〈y − xn, Jxn − Jun〉 ≥ 0, ∀y ∈ C,

un+1 = J−1
(
αn,0Jxn + βnJTxn + γnJSxn

)

for every n ≥ 1, where J is the duality mapping on E. Assume that the
control sequences satisfy the following restrictions:

(a) αn + βn + γn = 1, ∀n ≥ 0;
(b) lim infn→∞ αnβn > 0 and lim infn→∞ αnγn > 0

If J is weakly sequentially continuous, then {xn} converges weakly to
z ∈ F (T ) ∩ F (S), where z = limn→∞ ΠF (T )∩F (S)xn.
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