A STUDY ON THE RECURRENCE RELATIONS AND
 VECTORS X_{λ}, S_{λ} AND U_{λ} IN $g-E S X_{n}$

In Ho Hwang

Abstract

The manifold $g-E S X_{n}$ is a generalized n-dimensional Riemannian manifold on which the differential geometric structure is imposed by the unified field tensor $g_{\lambda \mu}$ through the $E S$-connection which is both Einstein and semi-symmetric. In this paper, we investigate the properties of the vectors X_{λ}, S_{λ} and U_{λ} of $g-E S X_{n}$, with main emphasis on the derivation of several useful generalized identities involving it.

1. Introduction

Manifolds with recurrent connections have been studied by many authors, such as Chung, Datta, E.M. Patterson, M.Pravanovitch, Singal, and Takano, etc(refer to [3] and [4]). Examples of such manifolds are those of recurrent curvature, Ricci-recurrent manifolds, and bi-recurrent manifolds.

In this paper, we introduce a new concept of semi-symmetric connection $\Gamma_{\lambda}{ }^{\nu}{ }_{\mu}$ on a generalized n-dimensional Riemannian manifold X_{n} and study its recurrence relations in the first. In the second, we investigate the properties of the vectors X_{λ}, S_{λ} and U_{λ} of $g-E S X_{n}$.

The main purpose of the present paper is to obtain several basic identities satisfied by the vectors X_{λ}, S_{λ} and U_{λ} and recurrence relations in $g-E S X_{n}$ which is both semi-symmetric and Einstein .

Received March 9, 2010. Revised June 1, 2010. Accepted June 7, 2010.
2000 Mathematics Subject Classification: 83E50, 83C05, 58A05.
Key words and phrases: ES-manifold, recurrent relation.
This research was supported by University of Incheon Research Grant, 2008-2009.

2. Preliminaries

This section is a brief collection of basic concepts, results, and notations needed in subsequent considerations. They are due to Chung ([3], 1963), Hwang ([2], 1988), and Mishra([7], 1959) mostly due to [6].
(a) generalized n-dimensional Riemannian manifold X_{n}

Let X_{n} be a generalized n-dimensional Riemannian manifold referred to a real coordinate system x^{ν}, which obeys the coordinate transformations $x^{\nu} \rightarrow x^{\nu^{\prime}}$ for which

$$
\begin{equation*}
\operatorname{det}\left(\frac{\partial x^{\prime}}{\partial x}\right) \neq 0 \tag{2.1}
\end{equation*}
$$

In $n-g-U F T$ the manifold X_{n} is endowed with a real nonsymmetric tensor $g_{\lambda \mu}$, which may be decomposed into its symmetric part $h_{\lambda \mu}$ and skew-symmetric part $k_{\lambda \mu}$:

$$
\begin{array}{rlrl}
g_{\lambda \mu} & =h_{\lambda \mu}+k_{\lambda \mu}, & \quad \text { where } & \\
\mathfrak{g} & =\operatorname{det}\left(g_{\lambda \mu}\right) \neq 0, \quad \mathfrak{h}=\operatorname{det}\left(h_{\lambda \mu}\right) \neq 0, \quad \mathfrak{k}=\operatorname{det}\left(k_{\lambda \mu}\right) \tag{2.2b}
\end{array}
$$

In virtue of $(2.2 b)$ we may define a unique tensor $h^{\lambda \nu}$ by

$$
\begin{equation*}
h_{\lambda \mu} h^{\lambda \nu}=\delta_{\mu}^{\nu} \tag{2.3}
\end{equation*}
$$

which together with $h_{\lambda \mu}$ will serve for raising and/or lowering indices of tensors in X_{n} in the usual manner. There exists a unique tensor $* g^{\lambda \nu}$ satisfying

$$
\begin{equation*}
g_{\lambda \mu}{ }^{*} g^{\lambda \nu}=g_{\mu \lambda}{ }^{*} g^{\nu \lambda}=\delta_{\mu}^{\nu} \tag{2.4}
\end{equation*}
$$

It may be also decomposed into its symmetric part ${ }^{*} h_{\lambda \mu}$ and skewsymmetric part ${ }^{*} k_{\lambda \mu}$:

$$
\begin{equation*}
{ }^{*} g^{\lambda \nu}={ }^{*} h^{\lambda \nu}+{ }^{*} k^{\lambda \nu} \tag{2.5}
\end{equation*}
$$

The manifold X_{n} is connected by a general real connection $\Gamma_{\lambda}{ }^{\nu}{ }_{\mu}$ with the following transformation rule:

$$
\begin{equation*}
\Gamma_{\lambda^{\prime}}^{\nu^{\prime}}{ }_{\mu^{\prime}}=\frac{\partial x^{\nu^{\prime}}}{\partial x^{\alpha}}\left(\frac{\partial x^{\beta}}{\partial x^{\lambda^{\prime}}} \frac{\partial x^{\gamma}}{\partial x^{\mu^{\prime}}} \Gamma_{\beta}{ }^{\alpha}{ }_{\gamma}+\frac{\partial^{2} x^{\alpha}}{\partial x^{\lambda^{\prime}} \partial x^{\mu^{\prime}}}\right) \tag{2.6}
\end{equation*}
$$

A study on the recurrence relations and vectors X_{λ}, S_{λ} and U_{λ} in $g-E S X_{n} 135$
It may also be decomposed into its symmetric part $\Lambda_{\lambda}{ }^{\nu}{ }_{\mu}$ and its skewsymmetric part $S_{\lambda \nu}{ }^{\nu}$, called the torsion of $\Gamma_{\lambda}{ }^{\nu}{ }_{\mu}$:

$$
\begin{equation*}
\Gamma_{\lambda}{ }^{\nu}{ }_{\mu}=\Lambda_{\lambda}{ }^{\nu}{ }_{\mu}+S_{\lambda \mu}{ }^{\nu} ; \quad \Lambda_{\lambda}{ }^{\nu}{ }_{\mu}=\Gamma_{\left(\lambda^{\nu}{ }_{\mu)} ; \quad S_{\lambda \mu}{ }^{\nu}=\Gamma_{[\lambda}{ }^{\nu}{ }_{\mu]}, ~\right.}^{0} \tag{2.7}
\end{equation*}
$$

A connection $\Gamma_{\lambda}{ }^{\nu}{ }_{\mu}$ is said to be Einstein if it satisfies the following system of Einstein's equations:

$$
\begin{array}{rlr}
\partial_{\omega} g_{\lambda \mu} & -\Gamma_{\lambda}{ }^{\alpha}{ }_{\omega} g_{\alpha \mu}-\Gamma_{\omega}{ }^{\alpha}{ }_{\mu} g_{\lambda \alpha}=0, & \text { or equivalently } \\
D_{\omega} g_{\lambda \mu} & =2 S_{\omega \mu}{ }^{\alpha} g_{\lambda \alpha} & \tag{2.8b}
\end{array}
$$

where D_{ω} is the symbolic vector of the covariant derivative with respect to $\Gamma_{\lambda}{ }^{\nu}{ }_{\mu}$. In order to obtain $g_{\lambda \mu}$ involved in the solution for $\Gamma_{\lambda}{ }^{\nu}{ }_{\mu}$ in (2.8), certain conditions are imposed. These conditions may be condensed to

$$
\begin{equation*}
S_{\lambda}=S_{\lambda \alpha}^{\alpha}=0, \quad R_{[\mu \lambda]}=\partial_{[\mu} Y_{\lambda]}, \quad R_{(\mu \lambda)}=0 \tag{2.9}
\end{equation*}
$$

where Y_{λ} is an arbitrary vector, and

$$
\begin{equation*}
\left.R_{\omega \mu \lambda}{ }^{\nu}=2\left(\partial_{[\mu} \Gamma_{|\lambda|}{ }^{\nu} \omega\right]+\Gamma_{\alpha}{ }^{\nu}\left[\mu \Gamma_{|\lambda|}{ }^{\alpha} \omega\right]\right), \quad R_{\mu \lambda}=R_{\alpha \mu \lambda}{ }^{\alpha} \tag{2.10}
\end{equation*}
$$

If the system (2.8) admits a solution $\Gamma_{\lambda}{ }^{\nu}{ }_{\mu}$, it must be of the form (Hlavatý, 1957)

$$
\Gamma_{\lambda}^{\nu}{ }_{\mu}=\left\{\begin{array}{l}
\nu \tag{2.11}\\
\lambda \mu
\end{array}\right\}+S_{\lambda \mu}{ }^{\nu}+U^{\nu}{ }_{\lambda \mu}
$$

where $U^{\nu}{ }_{\lambda \mu}=2 h^{\nu \alpha} S_{\alpha(\lambda}{ }^{\beta} k_{\mu) \beta}$ and $\left\{\begin{array}{l}\nu \\ \lambda \mu\end{array}\right\}$ are Christoffel symbols defined by $h_{\lambda \mu}$
(b) Some notations and results The following quantities are frequently used in our further considerations:

$$
\begin{gather*}
g=\frac{\mathfrak{g}}{\mathfrak{h}}, \quad k=\frac{\mathfrak{k}}{\mathfrak{h}} \tag{2.12}\\
K_{p}=k_{\left[\alpha_{1}\right.}{ }^{\alpha_{1}}{k_{\alpha_{2}}}^{\alpha_{2}} \cdots k_{\left.\alpha_{p}\right]}{ }^{\alpha^{p}}, \quad(p=0,1,2, \cdots) \tag{2.13}\\
{ }^{(0)} k_{\lambda}{ }^{\nu}=\delta_{\lambda}^{\nu}, \quad{ }^{(p)} k_{\lambda}{ }^{\nu}=k_{\lambda}{ }^{\alpha}{ }^{(p-1)} k_{\alpha}{ }^{\nu} \quad(p=1,2, \cdots) \tag{2.14}
\end{gather*}
$$

In X_{n} it was proved in [3] that
$K_{0}=1, \quad K_{n}=k \quad$ if n is even, and $K_{p}=0 \quad$ if p is odd
(2.16) $\mathfrak{g}=\mathfrak{h}\left(1+K_{1}+K_{2}+\cdots+K_{n}\right) \quad$ or $\quad g=1+K_{1}+K_{2}+\cdots+K_{n}$

$$
\begin{equation*}
\sum_{s=0}^{n-\sigma} K_{s}^{(n-s+p)} k_{\lambda}^{\nu}=0 \quad(p=01,2, \cdots) \tag{2.17}
\end{equation*}
$$

We also use the following useful abbreviations for an arbitrary vector Y, for $p=1,2,3, \cdots$:

$$
\begin{align*}
& { }^{(p)} Y_{\lambda}={ }^{(p-1)} k_{\lambda}{ }^{\alpha} Y_{\alpha} \tag{2.18}\\
& { }^{(p)} Y^{\nu}={ }^{(p-1)} k^{\nu}{ }_{\alpha} Y^{\alpha} \tag{2.19}
\end{align*}
$$

(c) n-dimensional $E S$ manifold $E S X_{n}$

In this subsection, we display an useful representation of the $E S$ connection in $n-g$-UFT.

Definition 2.1. A connection $\Gamma_{\lambda}{ }^{\nu}{ }_{\mu}$ is said to be semi-symmetric if its torsion tensor $S_{\lambda \mu}{ }^{\nu}$ is of the form

$$
\begin{equation*}
S_{\lambda \mu}{ }^{\nu}=2 \delta_{[\lambda}^{\nu} X_{\mu]} \tag{2.20}
\end{equation*}
$$

for an arbitrary non-null vector X_{μ}. A connection which is both semisymmetric and Einstein is called a ES-connection. An n-dimensional generalized Riemannian manifold X_{n}, on which the differential geometric structure is imposed by $g_{\lambda \mu}$ by means of a $E S$-connection, is called an n-dimensional $E S$-manifold. We denote this manifold by $g-E S X_{n}$ in our further considerations.

Theorem 2.2. Under the condition (2.20), the system of equations (2.8) is equivalent to

$$
\Gamma_{\lambda}^{\nu}{ }_{\mu}=\left\{\begin{array}{l}
\nu \tag{2.21}\\
\lambda \mu
\end{array}\right\}+2 k_{(\lambda}^{\nu} X_{\mu)}+2 \delta_{[\lambda}^{\nu} X_{\mu]}
$$

Proof. Substituting (2.20) for $S_{\lambda \mu}{ }^{\nu}$ into (2.11), we have the representation (2.21).

3. Properties of the vectors X_{λ}, S_{λ} and U_{λ}

This section is concerned with identities satisfied by the vectors X_{λ}, given by (2.19) and the vectors S_{λ} in (2.7) and

$$
\begin{equation*}
U_{\lambda}=U^{\alpha}{ }_{\lambda \alpha} \tag{3.1}
\end{equation*}
$$

A study on the recurrence relations and vectors X_{λ}, S_{λ} and U_{λ} in $g-E S X_{n} 137$
Theorem 3.1. In $g-E S X_{n}$ under present conditions, the following recurrence relation hold:

$$
\begin{equation*}
\sum_{s=0}^{n-\sigma} K_{s}^{(n-s+p)} k_{\lambda}^{\nu}=0 \quad(p=0,1,2, \cdots) \tag{3.2}
\end{equation*}
$$

where

$$
\sigma= \begin{cases}0 & \text { if } n \text { is even } \\ 1 & \text { if } n \text { is odd }\end{cases}
$$

Proof. The relation (3.2) is a direct consequence of (2.17) and (2.18).

Theorem 3.2. In $g-E S X_{n}$, the vectors S_{λ} and U_{λ} are given by

$$
\begin{gather*}
S_{\lambda}=(1-n) X_{\lambda} \tag{3.3}\\
U_{\lambda}=\frac{1}{2} \partial_{\lambda} \ln \mathfrak{g} \tag{3.4}
\end{gather*}
$$

Proof. Putting $\mu=\nu$ in (2.20), we have (3.3). In order to prove (3.4), consider the following Einstein's equations (2.8a). Multiplying * $g^{\lambda \mu}$ to both sides of (2.8a) and making use of (2.4), we have

$$
\begin{equation*}
\partial_{\omega} \ln \mathfrak{g}-\Gamma_{\alpha}{ }^{\alpha}{ }_{\omega}-\Gamma_{\omega}{ }^{\alpha}{ }_{\alpha}=0 \tag{3.5}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\partial_{\omega} \ln \mathfrak{g}+2 S_{\omega}-2 \Gamma_{\omega}{ }^{\alpha}{ }_{\alpha}=0 \tag{3.6}
\end{equation*}
$$

On the other hand, in virtue of classical result

$$
\left\{\begin{array}{l}
\alpha \tag{3.7}\\
\omega \alpha
\end{array}\right\}=\frac{1}{2} \partial_{\omega} \ln \mathfrak{h}
$$

the result (2.2) gives

$$
\begin{equation*}
\Gamma_{\omega}{ }^{\alpha}{ }_{\alpha}=\frac{1}{2} \partial_{\omega} \ln \mathfrak{h}+S_{\omega}+U_{\omega} \tag{3.8}
\end{equation*}
$$

The relation (3.4) immediately follows from (3.6) and (3.8).
Theorem 3.3. In $g-E S X_{n}$, the following relations hold for $p, q=$ $1,2,3, \cdots$:

$$
\begin{gather*}
{ }^{(p+1)} S_{\lambda}=(1-n)^{(p)} U_{\lambda} \tag{3.9}\\
{ }^{(p)} U_{\alpha}^{(q)} X^{\alpha}=0 \quad \text { if } \quad p+q-1 \quad \text { is } \quad \text { odd } \tag{3.10}
\end{gather*}
$$

Proof. The relation (3.9) is a direct consequence of (3.3), (3.4), and (2.18). Making use of (3.9), the relation

$$
\begin{equation*}
{ }^{(p)} U_{\alpha}^{(q)} X^{\alpha}={ }^{(p+1)} X_{\alpha}^{(q)} X^{\alpha}=(-1)^{q(p+q-1)} k_{\alpha \beta} X^{\alpha} X^{\beta} \tag{3.11}
\end{equation*}
$$

follows. The statement (3.10) may be proved from (3.11), since ${ }^{(p+q-1)} k_{\alpha \beta}$ is skew-symmetric if $p+q-1$ is odd.

Theorem 3.4. In $g-E S X_{n}$, the following relations hold:

$$
\begin{gather*}
D_{\lambda} X_{\mu}=\nabla_{\lambda} X_{\mu} \tag{3.12}\\
D_{[\lambda} X_{\mu]}=\nabla_{[\lambda} X_{\mu]}=\partial_{[\lambda} X_{\mu]} \tag{3.13}\\
\nabla_{[\lambda} U_{\mu]}=0, \quad D_{[\lambda} U_{\mu]}=2 U_{[\lambda} X_{\mu]}=2^{(2)} X_{[\lambda} X_{\mu]} \tag{3.14}
\end{gather*}
$$

where ∇_{ω} is the symbolic vector of the covariant derivative with respect to the Christoffel symbols defined by $h_{\lambda \mu}$.

Proof. In virtue of (2.18) and Theorem 2.2, the relation (3.11) follows as in the following way:

$$
\begin{aligned}
D_{\lambda} X_{\mu} & =\nabla_{\lambda} X_{\mu}-X_{\alpha} S_{\mu \lambda}{ }^{\alpha}-X_{\alpha} U^{\alpha}{ }_{\mu \lambda} \\
& =\nabla_{\lambda} X_{\mu}-2 X_{[\mu} X_{\lambda]}+h_{\mu \lambda}\left(k_{\alpha \beta} X^{\alpha} X^{\beta}\right) \\
& =\nabla_{\alpha} X_{\mu}
\end{aligned}
$$

The relation (3.13) are direct consequences of (3.12). Since $\partial_{[\lambda} U_{\mu]}=0$ in virtue of the (3.4), we have the first relation of (3.14). Similarly, the second relation of (3.14) may be proved in virtue of (3.4).

References

[1] Hwang, I. H., A study on the geometry of 2-dimensional $R E$-manifold X_{2}, J. Korean Math. Soc., 32(2)(1995), 301-309.
[2] Hwang, I. H., Three- and Five- dimensional considerations of the geometry of Einstein's g-unified field theory, Internat. J. Theoret. Phys. 27(9)(1988), 11051136.
[3] Chung, K. T., Einstein's connection in terms of ${ }^{*} g^{\lambda \nu}$, Nuovo Cimento Soc. Ital. Fis. B, $\mathbf{2 7}$ (X)(1963), 1297-1324.
[4] Datta, D. k., Some theorems on symmetric recurrent tensors of the second order, Tensor (N.S.) 15(1964), 1105-1136.
[5] Einstein, A., The meaning of relativity, Princeton University Press, 1950.
[6] Hlavatý, V., Geometry of Einstein's unified field theory, Noordhoop Ltd., 1957.
[7] Mishra, R. S., n-dimensional considerations of unified field theory of relativity, Tensor (N.S.) 9(1959), 217-225.

A study on the recurrence relations and vectors X_{λ}, S_{λ} and U_{λ} in $g-E S X_{n} 139$
[8] Werde, R. C., n-dimensional considerations of the basic principles A and B of the unified field theory of relativity, Tensor (N.S.) 8(1958), 95-122.

Department of Mathematics
University of Incheon
Incheon 406-772, Korea
E-mail: ho818@incheon.ac.kr

